Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be...Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.展开更多
Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cy...Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cytoskeletal reconstruction.However,it is unclear whether microtubule dynamics play a role in this process.To address this,we treated cultured sciatic nerve explants,an in vitro model of Wallerian degeneration,with the microtubule-targeting agents paclitaxel and nocodazole.We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation,whereas nocodazole-induced microtubule destabilization inhibited these processes.Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration,as well as functional recovery of nerve conduction and target muscle and motor behavior,respectively.These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration.This study was approved by the Animal Care and Use Committee of Southern Medical University,China(approval No.SMUL2015081) on October 15,2015.展开更多
<strong>Objective: </strong>To explore the therapeutic effect of autologous blood reinfusion combined with controlled hypotension in surgical spinal fixation during the outbreak of COVID-19. <strong>...<strong>Objective: </strong>To explore the therapeutic effect of autologous blood reinfusion combined with controlled hypotension in surgical spinal fixation during the outbreak of COVID-19. <strong>Methods: </strong>30 patients with spinal internal fixation autologous blood transfusion combined with controlled hypotension were selected as the subjects during the epidemic period from December 2019 to June 2020 in our hospital and during the operation, on the basis of routine blood pressure reduction, the American Haemonetice Corporation autologous blood continuous reinfusion system was used to infuse the blood recovered during the operation to the patient through filtration and other procedures. <strong>Results:</strong> 30 patients had no complications such as fever and hemolysis;And after the operation, the tube was dialed according to the drainage volume, the cervical thoracic and lumbar brace was customized, and the patient walked on the ground for one week;After no abnormalities, the patient was discharged. Intraoperative comparison of white blood cells (WBC), red blood cells (RBC), red blood cell pressure (HCT), hemoglobin (HGB), and coagulation time (PT) of patients with autologous blood before and after transfusion showed statistically significant differences before and after surgery (P < 0.001). <strong>Conclusion:</strong> During the new coronavirus pneumonia epidemic, the internal fixation of spinal surgery used a recovery machine to collect intraoperative blood for reinfusion. Intraoperative antihypertensive drugs were used to control blood pressure within a certain safe range. The postoperative clinical observation effect was significant and safe;especially at present the clinical significance during the epidemic was significant.展开更多
Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,p...Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation,migration,and phagocytosis.Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration,we speculated that ascorbic acid may accelerate this degenerative process.To test this hypothesis,400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection,and 200 mg/kg ascorbic acid was then administered intragastrically every day.In addition,rat sciatic nerve explants were treated with 200μM ascorbic acid.Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants.Furthermore,ascorbic acid inhibited myelin-associated glycoprotein expression,increased c-Jun expression in Schwann cells,and increased both the number of macrophages and the amount of myelin fragments in the macrophages.These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve,promoting the dedifferentiation of Schwann cells,and enhancing macrophage recruitment and phagocytosis.The study was approved by the Southern Medical University Animal Care and Use Committee(approval No.SMU-L2015081)on October 15,2015.展开更多
基金the Ministry of Science and Technology China Brain Initiative Grant,No.2022ZD0204701the National Natural Science Foundation of China,Nos.82071386&81870982(all to JG)。
文摘Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.
基金supported by the National Natural Science Foundation of China,Nos.82071386 (to JS),81870982 (to JS)&81571182 (to JS)the National Key Basic Research Program of China,No.2014CB542202 (to JS)+3 种基金the Program for Changjiang Scholars and Innovative Research Team in University of China,No.IRT-16R37 (to JS)Key Research&Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR110104008 (to HZ)Research Grant of Guangdong Province Key Laboratory of Psychiatric Disorders of China,No.N201904 (to JS)Natural Science Foundation of Guangdong Province of China,No.2017A030312009 (to JS)。
文摘Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cytoskeletal reconstruction.However,it is unclear whether microtubule dynamics play a role in this process.To address this,we treated cultured sciatic nerve explants,an in vitro model of Wallerian degeneration,with the microtubule-targeting agents paclitaxel and nocodazole.We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation,whereas nocodazole-induced microtubule destabilization inhibited these processes.Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration,as well as functional recovery of nerve conduction and target muscle and motor behavior,respectively.These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration.This study was approved by the Animal Care and Use Committee of Southern Medical University,China(approval No.SMUL2015081) on October 15,2015.
文摘<strong>Objective: </strong>To explore the therapeutic effect of autologous blood reinfusion combined with controlled hypotension in surgical spinal fixation during the outbreak of COVID-19. <strong>Methods: </strong>30 patients with spinal internal fixation autologous blood transfusion combined with controlled hypotension were selected as the subjects during the epidemic period from December 2019 to June 2020 in our hospital and during the operation, on the basis of routine blood pressure reduction, the American Haemonetice Corporation autologous blood continuous reinfusion system was used to infuse the blood recovered during the operation to the patient through filtration and other procedures. <strong>Results:</strong> 30 patients had no complications such as fever and hemolysis;And after the operation, the tube was dialed according to the drainage volume, the cervical thoracic and lumbar brace was customized, and the patient walked on the ground for one week;After no abnormalities, the patient was discharged. Intraoperative comparison of white blood cells (WBC), red blood cells (RBC), red blood cell pressure (HCT), hemoglobin (HGB), and coagulation time (PT) of patients with autologous blood before and after transfusion showed statistically significant differences before and after surgery (P < 0.001). <strong>Conclusion:</strong> During the new coronavirus pneumonia epidemic, the internal fixation of spinal surgery used a recovery machine to collect intraoperative blood for reinfusion. Intraoperative antihypertensive drugs were used to control blood pressure within a certain safe range. The postoperative clinical observation effect was significant and safe;especially at present the clinical significance during the epidemic was significant.
基金supported by the National Natural Science Foundation of China,Nos.81870982&81571182the Program for Changjiang Scholars and Innovative Research Team in Universities of China,No.IRT-16R37+4 种基金the National Key Basic Research Program of China,No.2014CB542202the Science and Technology Project of Guangdong Province of China,No.2015A020212024Key Research&Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR110104008the Natural Science Foundation of Guangdong Province of China,No.2017A030312009Research Grant of Guangdong Province Key Laboratory of Psychiatric Disorders of China,No.N201904(all to JG).
文摘Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation,migration,and phagocytosis.Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration,we speculated that ascorbic acid may accelerate this degenerative process.To test this hypothesis,400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection,and 200 mg/kg ascorbic acid was then administered intragastrically every day.In addition,rat sciatic nerve explants were treated with 200μM ascorbic acid.Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants.Furthermore,ascorbic acid inhibited myelin-associated glycoprotein expression,increased c-Jun expression in Schwann cells,and increased both the number of macrophages and the amount of myelin fragments in the macrophages.These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve,promoting the dedifferentiation of Schwann cells,and enhancing macrophage recruitment and phagocytosis.The study was approved by the Southern Medical University Animal Care and Use Committee(approval No.SMU-L2015081)on October 15,2015.