期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Hydrodynamic Assessment of A New Nature-Based Armour Unit on Rubble Mound Breakwater for Coastal Protection
1
作者 Ehsan SAFA Alireza MOJTAHEDI +1 位作者 Abdolmajid MOHAMMADIAN Mohamad Ali Lotfollahi YAGHIN 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期439-452,共14页
This research proposes a novel nature-based design of a new concrete armour unit for the cover layer of a rubblemoundbreakwater. Armour units are versatile with respect to shape, orientation, surface condition details... This research proposes a novel nature-based design of a new concrete armour unit for the cover layer of a rubblemoundbreakwater. Armour units are versatile with respect to shape, orientation, surface condition details, and porosity.Therefore, a detailed analysis is required to investigate the exact state of their hydraulic interactions and structuralresponses. In this regard, the performance results of several traditional armour units, including the Antifer cube,Tetrapod, X-block and natural stone, are considered for the first step of this study. Then, the related observed resultsare compared with those obtained for a newly designed (artificial coral) armour unit. The research methodology utilizesthe common wave flume test procedure. Furthermore, several verified numerical models in OpenFOAM code areused to gain the extra required data. The proposed armour is configured to provide an effective shore protection as anenvironmental-friendly coastal structure. Thus it is designed with a main trunk including deep grooves to imitate thetypical geometry of a coral type configuration, so as to attain desirable performance. The observed results and ananalytic hierarchy process (AHP) concept are used to compare the hydraulic performance of the studied traditionaland newly proposed (artificial coral) armour units. The results indicate that the artificial coral armour unit demonstratesacceptable performance. The widely used traditional armour units might be replaced by newer designs for betterwave energy dissipation, and more importantly, for fewer adverse effects on the marine environment. 展开更多
关键词 rubble mound breakwater hydraulic interaction armour unit analytic hierarchy process numerical model
下载PDF
Assessment of water quality suitability for agriculture in a potentially leachate-contaminated region
2
作者 Aida H Baghanam Vahid Nourani +1 位作者 Zohre Khodaverdi Amirreza T Vakili 《Journal of Groundwater Science and Engineering》 2024年第3期281-292,共12页
Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region o... Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season. 展开更多
关键词 Leachate pollution index(LPI) Sodium adsorption ratio(SAR) Soluble sodium index(SSI) Water quality in agriculture
下载PDF
Agricultural Water Footprint of Southern Highbush Blueberry Produced Commercially with Drip Irrigation and Sprinkler Frost Protection 被引量:1
3
作者 Alejandro Pannunzio Eduardo Holzapfel +3 位作者 Alicia Fernandez Cirelli Pamela Texeira Camilo Souto David R. Bryla 《Agricultural Sciences》 CAS 2023年第1期114-128,共15页
A study was conducted from 2010 to 2017 to determine the water footprint for producing blueberries in the Entre Ríos province of Argentina. Three cultivars of southern highbush blueberry (hybrid cross of Vacciniu... A study was conducted from 2010 to 2017 to determine the water footprint for producing blueberries in the Entre Ríos province of Argentina. Three cultivars of southern highbush blueberry (hybrid cross of Vaccinium sp.) were evaluated in the study, including “Star”, “Emerald”, and “Snowchaser”. In each case, the plants were irrigated by drip and protected from frost using overhead sprinklers. Water requirements for irrigation and frost protection varied among the cultivars due to differences in the timing of flowering and fruit development. The annual water footprint for fruit production in each cultivar is expressed in units of cubic meters of water used to produce one ton of fresh fruit and ranged from 212 - 578 m<sup>3</sup>&#8729;t<sup>&#8722;1</sup> for “Star”, 296 - 985 m<sup>3</sup>&#8729;t<sup>&#8722;1</sup> for “Emerald”, and 536 - 4066 m<sup>3</sup>&#8729;t<sup>&#8722;1</sup> for “Snowchaser”. “Snowchaser” flowered earlier than the other cultivars and, therefore, needed more water for frost protection. “Star”, on the other hand, ripened the latest among the cultivars and required little to no water for frost protection. Frost protection required a minimum of 30 m<sup>3</sup>&#8729;h<sup>&#8722;1</sup> of water per hectare and in addition to drip irrigation was a major component of the water footprint. 展开更多
关键词 BLUE Green and Grey Water Freeze Damage Irrigation Efficiency MICROIRRIGATION
下载PDF
Prioritization of Water Resources Management Problems in North Central Nigeria Using Rapid Impact Assessment Matrix (RIAM) 被引量:2
4
作者 Olayinka Gafar Okeola Khadijat Abdulkareem Abdul Raheem 《Journal of Water Resource and Protection》 2016年第3期345-357,共13页
This study employed the Rapid Impact Assessment Matrix (RIAM) to prioritize the water resources management problems in the North Central Nigeria. This was done through the assessment of the status of water resources m... This study employed the Rapid Impact Assessment Matrix (RIAM) to prioritize the water resources management problems in the North Central Nigeria. This was done through the assessment of the status of water resources management in the region, evaluation of existing policy and strategy of water management, identification of the management problems and the prioritization with RIAM. The stakeholders identified water resources management problems, ranked them in other of severity in different categories and also evaluated them using the RIAM techniques in the administered questionnaire. Eleven problems were analyzed based on the physical/chemical, biological/ecological, social/cultural and economic/operational factors using several impact indicators. Scores were assigned, the RIAM models applied and the averages taken to arrive at the final assessment scores. The two major water resources management problems identified are: 1) inadequate funds for further agricultural, hydroelectric, navigation and industrial development;2) poor data collection and banking. These problems were prioritized by RIAM in order of severity for urgent intervention. The RIAM technique has made a key contribution to the prioritization of water resources management by providing insights into urgent problems according to stakeholders and thus guides the policy maker in appropriate decision making. 展开更多
关键词 Water Resources Rapid Impact Assessment Matrix (RIAM) Stakeholders PRIORITIZATION North Central Nigeria
下载PDF
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
5
作者 WANG Xingbo ZHANG Shuanghu TIAN Yiman 《Journal of Arid Land》 SCIE CSCD 2024年第4期461-482,共22页
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in... Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin. 展开更多
关键词 economic belt runoff change influencing assessment CLIMATE human activities
下载PDF
Stochastic Analysis and Modeling of Velocity Observations in Turbulent Flows
6
作者 Evangelos Rozos Jorge Leandro Demetris Koutsoyiannis 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期45-56,共12页
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i... Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment. 展开更多
关键词 Smart modeling Turbulent flows Data analysis Stochastic analysis Image velocimetry
下载PDF
Artificial Intelligence for Maximizing Agricultural Input Use Efficiency: Exploring Nutrient, Water and Weed Management Strategies
7
作者 Sumit Sow Shivani Ranjan +8 位作者 Mahmoud F.Seleiman Hiba M.Alkharabsheh Mukesh Kumar Navnit Kumar Smruti Ranjan Padhan Dhirendra Kumar Roy Dibyajyoti Nath Harun Gitari Daniel O.Wasonga 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1569-1598,共30页
Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also i... Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management. 展开更多
关键词 Agriculture artificial intelligence crop management NUTRIENT IRRIGATION weed management resource use efficiency
下载PDF
Assessment of water resources in Yarmouk River Basin using geospatial technique during the period 1980–2020
8
作者 Noor M AL-KHARABSHEH 《Journal of Arid Land》 SCIE CSCD 2022年第2期154-166,共13页
It is common knowledge that Yarmouk River Basin(YRB)is shared between Jordan and Syria.Management of YRB trans-boundary water resources is attracting increasing interest because it is a strategic water resource for th... It is common knowledge that Yarmouk River Basin(YRB)is shared between Jordan and Syria.Management of YRB trans-boundary water resources is attracting increasing interest because it is a strategic water resource for the riparian countries.Actually,lack of sharing information regarding hydrological flows and basin’s water management between partners’countries makes it difficult to distinguish between natural and man-made factors affecting the water body.Therefore,this study seeks to address and assess the main on-site changes that exert on YRB.Geospatial technique and arithmetic equations were combined to carry out an assessment of the changes on water resources in YRB.Data,information and field measurements of the basin were aggregated,compiled and presented to determine the extent of changes during the period 1980-2020.Remarkable findings showed that precipitation amount in the basin significantly declined during the period 1980-2020 in particularly after the year 1992.Pumping rate of groundwater was 550 x 103 m3/a,exceeding the basin’s safe yield.Draw down of static groundwater level over time approached the value of-3.2 m/a due to the over abstraction in the aquifer body.Additionally,the evaporation rate reached more than 99%in some regions in the basin.Moreover,the number of private wells has increased from 98 wells in 1980 to 126 wells in 2020,showing the excessive extraction of groundwater.These findings indicate that the study area is subjected to a considerable groundwater depletion in the near future due to extensive abstraction,continuous drilling of illegal wells and decreased annual precipitation under the shadow of the rapid population growth and continuous influx of refugees.Therefore,decision makers-informed scenarios are suggested in the development of water resource portfolios,which involves the combination of management and infrastructural actions that enhance the water productivity of the basin.Further studies are recommended to evaluate the on-site changes on water resources in YRB in collaboration with riparian countries and to establish monitoring system for continuous and accurate measurements of the basin. 展开更多
关键词 ASSESSMENT geospatial technique on-site changes water resources Yarmouk River Basin
下载PDF
Evaluation of Rainfall Tendency for the Twentieth Century over Indira Sagar Region in Central India
9
作者 Rituraj Shukla Deepak Khare +4 位作者 Ramesh P. Rudra Priti Tiwari Himanshu Sharma Prasad Daggupati Pradeep Goel 《American Journal of Climate Change》 2024年第1期47-68,共22页
The study investigates long-term changes in annual and seasonal rainfall patterns in the Indira Sagar Region of Madhya Pradesh, India, from 1901 to 2010. Agriculture sustainability, food supply, natural resource devel... The study investigates long-term changes in annual and seasonal rainfall patterns in the Indira Sagar Region of Madhya Pradesh, India, from 1901 to 2010. Agriculture sustainability, food supply, natural resource development, and hydropower system reliability in the region rely heavily on monsoon rainfall. Monthly rainfall data from three stations (East Nimar, Barwani, and West Nimar) were analyzed. Initially, the pre-whitening method was applied to eliminate serial correlation effects from the rainfall data series. Subsequently, statistical trends in annual and seasonal rainfall were assessed using both parametric (student-t test) and non-parametric tests [Mann-Kendall, Sen’s slope estimator, and Cumulative Sum (CUSUM)]. The magnitude of the rainfall trend was determined using Theil-Sen’s slope estimator. Spatial analysis of the Mann-Kendall test on an annual basis revealed a statistically insignificant decreasing trend for Barwani and East Nimar and an increasing trend for West Nimar. On a seasonal basis, the monsoon season contributes a significant percentage (88.33%) to the total annual rainfall. The CUSUM test results indicated a shift change detection in annual rainfall data for Barwani in 1997, while shifts were observed in West and East Nimar stations in 1929. These findings offer valuable insights into regional rainfall behavior, aiding in the planning and management of water resources and ecological systems. 展开更多
关键词 PRECIPITATION PARAMETRIC Non-Parametric Tests Trend Analysis Serial Correlations
下载PDF
Geospatial Variability of Cholera Cases in Malawi Based on Climatic and Socioeconomic Influences
10
作者 Emmanuel Chinkaka Francis Chauluka +2 位作者 Ruth Chinkaka Billy Kachingwe Esther Banda Latif 《Journal of Geographic Information System》 2024年第1期1-20,共20页
Cholera remains a public health threat in most developing countries in Asia and Africa including Malawi with seasonal recurrent outbreaks. Malawi’s recent Cholera outbreak in 2022 and 2023, exhibited higher morbidity... Cholera remains a public health threat in most developing countries in Asia and Africa including Malawi with seasonal recurrent outbreaks. Malawi’s recent Cholera outbreak in 2022 and 2023, exhibited higher morbidity and mortality rates than the past two decades. Lack of spatiotemporal-based technology and variability assessment tools in Malawi’s Cholera monitoring and management, limit our understanding of the disease’s epidemiology. The present work developed a spatiotemporal variability model for Cholera disease at district level and its relationship to socioeconomic and climatic factors based on cumulative confirmed Cholera cases in Malawi from March 2022 to July 2023 using Z-score statistic and multiscale geographically weighted regression (MGWR) in a Geographical Information System (GIS). We found out that socioeconomic factors such as access to safe drinking water, population density and poverty level, and climatic factors including temperature and rainfall strongly influenced Cholera prevalence in a complex and multifaceted manner. The model shows that Lilongwe, Mangochi, Blantyre and Balaka districts were highly vulnerable to Cholera disease followed by lakeshore districts of Salima, Nkhotakota, Nkhata-Bay and Karonga than other districts. We recommend strategic measures such as Water, Sanitation, and Hygiene (WASH) interventions, community awareness on proper water storage, Cholera case management, vaccination campaigns and spatial-based surveillance systems in the most affected districts. This research has shown that MGWR, as a surveillance system, has the potential of providing insights on the disease’s spatial patterns for public health authorities to identify high-risk districts and implement early response interventions to reduce the spread of the disease. 展开更多
关键词 CHOLERA Geospatial Variability PREVALENCE GIS MGWR VULNERABILITY Malawi
下载PDF
Exploring Sustainable Energy Futures: Assessing the Viability of CanmetENERG’s Hydropower Initiatives in Cameroon
11
作者 Qasim Rauf Yanpin Li Anam Ashraf 《Journal of Power and Energy Engineering》 2024年第7期1-22,共22页
This study examines how hydroelectric power projects, specifically the CanmetENERG initiative in Cameroon, play a crucial part in promoting sustainable development. Hydropower, seen as a cheap, local, and sustainable ... This study examines how hydroelectric power projects, specifically the CanmetENERG initiative in Cameroon, play a crucial part in promoting sustainable development. Hydropower, seen as a cheap, local, and sustainable power source, is given top priority in government funding plans, especially in emerging nations. By making use of the RETScreen Clean Energy Project Analysis Software, the analysis examines the financial feasibility of different choices for CanmetENERG, emphasizing the importance of a holistic strategy that incorporates economic, environmental, and social factors in project development. The importance of factoring in environmental, social, and cultural aspects in project development is highlighted by the substantial influence of tunnel construction on total expenses. The paper suggests harnessing Cameroon’s unused hydroelectric capacity while following sustainable development principles and international standards. It emphasizes the need for a well-rounded strategy that focuses on economic sustainability in addition to environmental and social issues to guarantee Cameroon’s energy market can sustain itself. Moreover, the research emphasizes the continuing need for advancements in hydroelectric power through research and technology, encouraging cooperation between academia, industry, and policymakers. Community involvement and stakeholder engagement are considered essential for inclusive decision-making and socially responsible project development. It is advised to use adaptive management tactics to deal with changing environmental and socio-economic circumstances. The CanmetENERG case study showcases a model for responsible and sustainable hydropower development that boosts the country’s energy security and environmental resilience. Apart from this particular instance, the study provides more extensive perspectives on effective methods for sustainable energy development, emphasizing the difficulty of maintaining a good balance between energy security, economic feasibility, and ecological sustainability. It requires a strategic shift towards self-sufficiency in energy and decreased reliance on imports. The article envisions a collaborative, interdisciplinary approach to shaping the future of hydroelectricity, emphasizing continuous research, technological advancements, and the involvement of key stakeholders. By promoting creativity, eco-friendly practices, and community engagement, hydroelectric projects can act as catalysts for sustainable development, making valuable contributions to society. 展开更多
关键词 HYDROELECTRICITY Clean Energy Sustainable Development Cameroon Energy Management Strategy
下载PDF
Calculation and Simulation of Evapotranspiration of Applied Water 被引量:8
12
作者 Richard L Snyder Shu Geng +1 位作者 Morteza Orang Sara Sarreshteh 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第3期489-501,共13页
The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate re... The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate reference evapotranspiration (ETo) and crop evapotranspiration (ETc) with the generated simulation data or with observed data. A database of default soil depth and water holding characteristics, effective crop rooting depths, and crop coefficient (Kc) values to convert ETo to ETc are input into the program. After calculating daily ETc, the input and derived data are used to determine effective rainfall and to generate hypothetical irrigation schedules to estimate the seasonal and annual evapotranspiration of applied water (ETaw), where ETaw is the net amount of irrigation water needed to produce a crop. in this paper, we will discuss the simulation model and how it determines ETaw for use in water resources planning. 展开更多
关键词 weather generator water balance crop water requirements water resource planning crop coefficient
下载PDF
California Simulation of Evapotranspiration of Applied Water and Agricultural Energy Use in California 被引量:4
13
作者 Morteza N Orang Richard L Snyder +6 位作者 Shu Geng Quinn J Hart Sara Sarreshteh Matthias Falk Dylan Beaudette Scott Hayes Simon Eching 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1371-1388,共18页
The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily s... The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily soil water balance and determine crop evapotranspiration (ETo), evapotranspiration of applied water (ETaw), and applied water (AW) for use in California water resources planning. ETaw is a seasonal estimate of the water needed to irrigate a crop assuming 100% irrigation efficiency. The model accounts for soils, crop coefficients, rooting depths, seepage, etc. that influence crop water balance. It provides spatial soil and climate information and it uses historical crop and land-use category information to provide seasonal water balance estimates by combinations of detailed analysis unit and county (DAU/County) over Califomia. The result is a large data base of ETc and ETaw that will be used to update information in the new California Water Plan (CWP). The application uses the daily climate data, i.e., maximum (Tx) and minimum (Tn) temperature and precipitation (Pcp), which were derived from monthly USDA-NRCS PRISM data (PRISM Group 2011) and daily US National Climate Data Center (NCDC) climate station data to cover California on a 4 kmx4 km change grid spacing. The application uses daily weather data to determine reference evapotranspiration (ETo), using the Hargreaves-Samani (HS) equation (Hargreaves and Samani 1982, 1985). Because the HS equation is based on temperature only, ETo from the HS equation were compared with CIMIS ETo at the same locations using available CIMIS data to determine correction factors to estimate CIMIS ETo from the HS ETo to account for spatial climate differences. CaI-SIMETAW also employs near real-time reference evapotranspiration (ETo) information from Spatial CIMIS, which is a model that combines weather station data and remote sensing to provide a grid of ETo information. A second database containing the available soil water holding capacity and soil depth information for all of California was also developed from the USDA-NRCS SSURGO database. The Cal-SIMETAW program also has the ability to generate daily weather data from monthly mean values for use in studying climate change scenarios and their possible impacts on water demand in the state. The key objective of this project is to improve the accuracy of water use estimates for the California Water Plan (CWP), which provides a comprehensive report on water supply, demand, and management in California. In this paper, we will discuss the model and how it determines ETaw for use in water resources planning. 展开更多
关键词 soil water balance crop water requirements weather generator water resource planning crop coefficient energy use
下载PDF
Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area,Ordos Basin,NW China 被引量:4
14
作者 Chu Wu Chen Fang +2 位作者 Xiong Wu Ge Zhu Yuzhe Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期781-790,共10页
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sour... Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area. 展开更多
关键词 Self-organizing maps Seasonal change Entropy-weighted theory Hydrogeochemical characteristics Groundwater quality
下载PDF
Water-induced changes in strength characteristics of polyurethane polymer and polypropylene fiber reinforced sand 被引量:3
15
作者 WANG Ying LIU Jin +3 位作者 SHAO Yong MA Xiao-fan QI Chang-qing CHEN Zhi-hao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1829-1842,共14页
As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the charact... As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content. 展开更多
关键词 POLYMER fiber reinforced sand IMMERSION compressive strength softening coefficient
下载PDF
Numerical simulation of groundwater and early warnings from the simulated dynamic evolution trend in the plain area of Shenyang,Liaoning Province(P.R. China) 被引量:2
16
作者 LIU Jun-qiu XIE Xin-min 《Journal of Groundwater Science and Engineering》 2016年第4期367-376,共10页
Groundwater level is the most direct factor reflecting whether groundwater is in a virtuous cycle. It is the most important benchmark for deciding whether a balance can be struck between groundwater discharge and rech... Groundwater level is the most direct factor reflecting whether groundwater is in a virtuous cycle. It is the most important benchmark for deciding whether a balance can be struck between groundwater discharge and recharge and whether groundwater exploitation will trigger problems pertinent to environment, ecology and environmental geology. According to the borehole and long-term monitoring wells data in the plain area of Shenyang, a numerical groundwater model is established and used to identify and verify the hydrogeological parameters and balanced items of groundwater. Then the concept of red line levels, the control levels of groundwater is proposed, the dynamic evolution trend of groundwater under different scenarios is analyzed and predicted and groundwater alerts are given when groundwater tables are not between the lower limit and the upper limit. Results indicated:(1) The results of identification and verification period fitted well, and the calculation accuracy of balanced items was high;(2) with the implementation of shutting wells, groundwater levels in urban areas of Shenyang would exceed the upper limit water level after 2020 and incur some secondary disasters;(3) under the recommended scenario of water resources allocation, early-warnings for groundwater tables outside the range would occur in the year of 2020, 2023, 2025 respectively for successive wet, normal and dry years. It was imperative to reopen some groundwater sources and enhance real-time supervision and early-warning to prevent the occurrence of potential problems. 展开更多
关键词 Groundwater table Groundwater exploitation Numerical modeling of groundwater Plain area of Shenyang
下载PDF
Simulating long-term effect of Hyrcanian forest loss on phosphorus loading at the sub-watershed level 被引量:1
17
作者 Fatemeh RAJAEI Abbas E SARI +4 位作者 Abdolrassoul SALMANMAHINY Timothy O RANDHIR Majid DELAVAR Reza D BEHROOZ Alireza M BAVANI 《Journal of Arid Land》 SCIE CSCD 2018年第3期457-469,共13页
Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest los... Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm^2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm^2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality. 展开更多
关键词 PHOSPHORUS land use change modeling forest loss prioritizing management area Tajan River Iran
下载PDF
Macro Rain Water Harvesting Network to Estimate Annual Runoff at Koysinjaq (Koya) District, Kurdistan Region of Iraq 被引量:2
18
作者 Saleh Zakaria Nadhir Al-Ansari +2 位作者 Yaseen T. Mustafa M. D. J. Alshibli Sven Knutsson 《Engineering(科研)》 2013年第12期956-966,共11页
Macro rainwater harvesting techniques (Macro RWH) are getting more popular to overcome the problem of water scarcity in arid and semi-arid areas. Iraq is experiencing serious water shortage problem now despite of the ... Macro rainwater harvesting techniques (Macro RWH) are getting more popular to overcome the problem of water scarcity in arid and semi-arid areas. Iraq is experiencing serious water shortage problem now despite of the presence of Tigris and Euphrates Rivers. RWH can help to overcome this problem. In this research, RWH was applied in Koya City in its districts, North West Iraq. Twenty-two basins were identified as the catchment area for the application of RWH technique. Watershed modeling system (WMS), based on Soil Conservation Service-curve number (SCS-CN) method, was applied to calculate direct runoff from individual daily rain storm using average annual rainfall records of the area. Two consecutive adjustments for the curve number were considered. The first was for the antecedent moisture condition (AMC) and the second was for the slope. These adjustments increased the total resultant harvested runoff up to 79.402 × 106 m3. The average percentage of increase of harvested runoff volume reached 9.28%. This implies that water allocation is of the order of 2000 cubic meter per capita per year. This quantity of water will definitely help to develop the area. 展开更多
关键词 MACRO RAINWATER HARVESTING Koysinjaq Kurdistan REGION Iraq
下载PDF
Using Visual MODFLOW Model to Assess the Efficiency of Subsurface Barrier Wall for Groundwater Flow Regulation and Reduction of Saline Intrution 被引量:1
19
作者 Nguyen Minh Khuyen Doan Van Long +3 位作者 Nguyen Tien Bach Tang Huu Dong Bui Cong Du Dang Dinh Phuc 《Journal of Environmental Science and Engineering(A)》 2021年第3期104-115,共12页
Barrier walls effectively store water,regulate underground flows,improve exploitable reserves and prevent saltwater intrusion.The effectiveness of the underground barrier wall depends not only on the hydrogeological s... Barrier walls effectively store water,regulate underground flows,improve exploitable reserves and prevent saltwater intrusion.The effectiveness of the underground barrier wall depends not only on the hydrogeological structure,the technical parameters of the wall but also on the layout scheme of the exploitation well system.The results showed that in natural conditions,the ground water level upstream of the barrier wall rose in the presence of a barrier wall.In wells located downstream of high barrier walls,the water level decreased.The amount of underground current flowing into the sea decreased,the annual average value of the whole region decreased was 316 m3/day and night.In presence of a wall,both the water level and the amount of evaporation increased.The average increase in evaporation volume during the calculation period of ten thousand days with walls was 4.114 m3/d.So in presence of a wall,the amount of water that can be exploited increases by the total amount of evaporation plus the decrease in discharge to the sea and is equal to 4,424 m3/d.In the exploitation condition,if the water level in the presence of wall is kept as low as in the absence of wall,the exploitation flow will increase to about 4,400 m3/day and night.From the calculated water level values when there is a wall and without a wall,we can see that if the exploitation flow in presence of a wall and in the absence of wall is the same,the water level drop at the calculated observation wells upstream of the wall will decrease from 0.21 m to 3.97 m.The condition of effective exploitation of the wall depends on the mining scheme.The exploitation scheme is reasonable,the exploitation flow of the wells does not exceed the allowable flow so as not to cause the drying of the aquifer at the location of the well.The upstream area of the wall reflects quite clearly as the Total dissolved solids content in observation wells upstream of the wall at the end of the calculation time is significantly reduced compared to that without the wall,ranging from 69 mg/L to 5,629 mg/L.In the presence of a wall,the water level of observation wells upstream of the wall is higher than that of without a wall from 0.10 m to 0.74 m. 展开更多
关键词 Subsurface barrier wall store water regulate underground flows.
下载PDF
Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa 被引量:1
20
作者 Imoleayo Ezekiel GBODE Toju Esther BABALOLA +1 位作者 Gulilat Tefera DIRO Joseph Daniel INTSIFUL 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期570-586,共17页
In situ data in West Africa are scarce,and reanalysis datasets could be an alternative source to alleviate the problem of data availability.Nevertheless,because of uncertainties in numerical prediction models and assi... In situ data in West Africa are scarce,and reanalysis datasets could be an alternative source to alleviate the problem of data availability.Nevertheless,because of uncertainties in numerical prediction models and assimilation methods,among other things,existing reanalysis datasets can perform with various degrees of quality and accuracy.Therefore,a proper assessment of their shortcomings and strengths should be performed prior to their usage.In this study,we examine the performance of ERA5 and ERA-interim(ERAI)products in representing the mean and extreme climates over West Africa for the period 1981-2018 using observations from CRU and CHIRPS.The major conclusion is that ERA5 showed a considerable decrease in precipitation and temperature biases and an improved representation of inter-annual variability in much of western Africa.Also,the annual cycle is better captured by ERA5 in three of the region’s climatic zones;specifically,precipitation is well-reproduced in the Savannah and Guinea Coast,and temperature in the Sahel.In terms of extremes,the ERA5 performance is superior.Still,both reanalyses underestimate the intensity and frequency of heavy precipitations and overestimate the number of wet days,as the numerical models used in reanalyses tend to produce drizzle more often.While ERA5 performs better than ERAI,both datasets are less successful in capturing the observed long-term trends.Although ERA5 has achieved considerable progress compared to its predecessor,improved datasets with better resolution and accuracy continue to be needed in sectors like agriculture and water resources to enable climate impact assessment. 展开更多
关键词 West Africa ERAI ERA5 REANALYSIS PRECIPITATION temperature EXTREMES
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部