The microstructural characteristics of P-25 TiO2 photocatalysts calcined at 600, 650,700, 750, 800, 900 and 1000℃ have been studied using XRD, TEM and BET. The photocatalytic activity of the samples were also examine...The microstructural characteristics of P-25 TiO2 photocatalysts calcined at 600, 650,700, 750, 800, 900 and 1000℃ have been studied using XRD, TEM and BET. The photocatalytic activity of the samples were also examined using the degradation of phenol as a model reaction.The results indicate that the calcination significantly affects both microstructural characteristics and photoactivity, and there is an apparent relationship between photocatalytic activity and centain mocrostructural characteristics.Over the range of calcination temperatures and durations studied, the sample calcined at 650℃ for 3 h revealed the highest photoreactivity, which can be ascribed to an improvement in crystallinity on calcination.The increase in the rutile content and grain size caused by the calcination at higher temperatures were observed to decrease the photocatalytic activities of the TiO2 samples.展开更多
A model of grade transition is presented for a commercialized fluidized bed gas-phase polyethylene production process. The quantity of off-specification product and the time of grade transition can be minimized by the...A model of grade transition is presented for a commercialized fluidized bed gas-phase polyethylene production process. The quantity of off-specification product and the time of grade transition can be minimized by the optimization of operating variables, such as polymerization temperature, the ratio of hydrogen to ethylene, the ratio of co-monomer to ethylene, feed rate of catalyst, and bed level. A new performance index, the ratio of melt flow (MFR), is included in the objective function, for restraining the sharp adjustment of operation variables and narrowing the distribution of molecular weight of the resin. It is recommended that catalyst feed rate and bed level are decreased in order to reduce the grade transition time and the quantity of off-specification product. This optimization problem is solved by an algorithm of sequential quadratic programming (SQP) in MATLAB. There is considerable difference between the forward transition and reverse transition of grade with regard to the operating variables due to the non-linearity of the system. The grade transition model is extended to a high space time yield (STY) process with the so-called condensed model operation. In the end, an optimization strategy for multi-product transition is proposed with two-level optimization of the objective function J(x,u) on the basis of the optimal grade transition model. A sequential transition of six commercial polyethylene grades is illustrated for an optimal multi-product operation.展开更多
Phenanthrene was solubilized in two different nonionic surfactants, Tween80 and Triton X-100. The bioavailability of phenanthrene to the bacteria isolated from the petroleum contaminated soils was studied based on the...Phenanthrene was solubilized in two different nonionic surfactants, Tween80 and Triton X-100. The bioavailability of phenanthrene to the bacteria isolated from the petroleum contaminated soils was studied based on the rotary flasks experiments. The results showed that the concentration of nonionic surfactants above the critical micelle concentration(CMC) can increase the solubility of phenanthrene in water and were innoxious to the phenanthrene-degrading bacteria; phenanthrene solubilized in the micelles of Tween80 was bioavailable and biodegradable. The research demonstrated the potential of surfactant-enhanced bioremediation of soils contaminated by hydrophobic organic compounds(HOCs).展开更多
Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has b...Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has been derived. The results are compared with our previous work based on the film theory. The 2,4-dichlorophenol destruction rate by ozonation is predicted using the enhancement factor model in this paper.展开更多
The electrodeposition of coatings consisting of alternate zinc and nickel deposits produced by successive deposition from a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Coat...The electrodeposition of coatings consisting of alternate zinc and nickel deposits produced by successive deposition from a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Coated samples have been evaluated in terms of surface appearance, surface morphologies and cross-sectional morphologies using scanning electron microscopy (SEM). The corrosion resistance of laminar coatings has been studied by means of salt spray accelerated testing and anodic polarization measurement. The results obtained showed that the corrosion performance of zinc-nickel laminar coatings was better than that of a single-layer zinc or nickel deposit with the same thickness, and the coatings with nickel sublayer adjacent to the steel substrate and zinc as the top layer had the best corrosion resistance. These results were in good agreement with the characteristics indicated in the morphologies of zinc-nickel laminar coatings after anodic polarisation measurement.展开更多
In most industrial fluidization units, two- or three-stage cyclone systems are used to clean the product gases. To return the solids to the bed, these cyclones are fitted with diplegs. By pass of gas from the bed thro...In most industrial fluidization units, two- or three-stage cyclone systems are used to clean the product gases. To return the solids to the bed, these cyclones are fitted with diplegs. By pass of gas from the bed through the dipleg is partially overcome by the back pressure build-up in the dipleg and by adding a trickle valve at the bottom of the dipleg. Diplegs of primary cyclones, operating at a high solid loading behave differently from diplegs of secondary and tertiary cyclones which operate at low solid loading. Both types have been investigated by pressure drop measurements, visual observation and by measurements of the air flow rate flowing up the riser. The primary dipleg was also studied using electrical capacitance tomography. The results are reported hereafter and will give a first indication towards the right design of the dipleg and the selection of the trickle valve. The influence of gas flow in the dipleg on the conversion in a catalytic fluidized bed reactor is found to be negligible.展开更多
A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc....A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc. Scoria was able to act not only as dielectricpellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia.Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 ℃to 200 ℃, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.展开更多
A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas vel...A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.展开更多
The adsorption capacity for vapor-phase elemental mercury(Hg0) of residual carbon separated from fly ash was studied in an attempt for the control of elemental mercury emissions from combustion processes. At low mercu...The adsorption capacity for vapor-phase elemental mercury(Hg0) of residual carbon separated from fly ash was studied in an attempt for the control of elemental mercury emissions from combustion processes. At low mercury concentrations(<200 μg/m3), unburned carbon had higher adsorption capacity than commercial activated carbon. The adsorbality of unburned carbon was also found to be source dependent. Isotherms of FS carbon(separated from fly ash of a power plant of Shishi in Fujian Province) were similar to those classified as typeⅡ. Isotherms of XJ carbon(separated from fly ash of a power plant of Jingcheng in Shanxi Province) were more like those classified as type Ⅲ. Due to the relatively low production costs, these residual carbons would likely be considerably more cost-effective for the full-scale removal of mercury from combustion flue gases than other technology.展开更多
The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260...The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260℃. The three reactions including methanol synthesisfrom CO and H_2, CO_2 and H_2, and methanol dehydration were chosen as the independent reactions.The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the modelwere obtained by using simplex method combined with genetic algorithm. The model is reliableaccording to statistical analysis and residual error analysis. The synergy effect of the reactionsover the bifunctional catalyst was compared with the effect for methanol synthesis catalyst underthe same conditions based on the model. The effects of syngas containing Na on the reactions werealso simulated.展开更多
Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron ...Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5% which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.展开更多
Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biof...Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m 3·h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.展开更多
文摘The microstructural characteristics of P-25 TiO2 photocatalysts calcined at 600, 650,700, 750, 800, 900 and 1000℃ have been studied using XRD, TEM and BET. The photocatalytic activity of the samples were also examined using the degradation of phenol as a model reaction.The results indicate that the calcination significantly affects both microstructural characteristics and photoactivity, and there is an apparent relationship between photocatalytic activity and centain mocrostructural characteristics.Over the range of calcination temperatures and durations studied, the sample calcined at 650℃ for 3 h revealed the highest photoreactivity, which can be ascribed to an improvement in crystallinity on calcination.The increase in the rutile content and grain size caused by the calcination at higher temperatures were observed to decrease the photocatalytic activities of the TiO2 samples.
文摘A model of grade transition is presented for a commercialized fluidized bed gas-phase polyethylene production process. The quantity of off-specification product and the time of grade transition can be minimized by the optimization of operating variables, such as polymerization temperature, the ratio of hydrogen to ethylene, the ratio of co-monomer to ethylene, feed rate of catalyst, and bed level. A new performance index, the ratio of melt flow (MFR), is included in the objective function, for restraining the sharp adjustment of operation variables and narrowing the distribution of molecular weight of the resin. It is recommended that catalyst feed rate and bed level are decreased in order to reduce the grade transition time and the quantity of off-specification product. This optimization problem is solved by an algorithm of sequential quadratic programming (SQP) in MATLAB. There is considerable difference between the forward transition and reverse transition of grade with regard to the operating variables due to the non-linearity of the system. The grade transition model is extended to a high space time yield (STY) process with the so-called condensed model operation. In the end, an optimization strategy for multi-product transition is proposed with two-level optimization of the objective function J(x,u) on the basis of the optimal grade transition model. A sequential transition of six commercial polyethylene grades is illustrated for an optimal multi-product operation.
文摘Phenanthrene was solubilized in two different nonionic surfactants, Tween80 and Triton X-100. The bioavailability of phenanthrene to the bacteria isolated from the petroleum contaminated soils was studied based on the rotary flasks experiments. The results showed that the concentration of nonionic surfactants above the critical micelle concentration(CMC) can increase the solubility of phenanthrene in water and were innoxious to the phenanthrene-degrading bacteria; phenanthrene solubilized in the micelles of Tween80 was bioavailable and biodegradable. The research demonstrated the potential of surfactant-enhanced bioremediation of soils contaminated by hydrophobic organic compounds(HOCs).
基金Supported by the China Scholarship Council and Guangdong Provincial Natural Science Foundation of China(No.950215).
文摘Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has been derived. The results are compared with our previous work based on the film theory. The 2,4-dichlorophenol destruction rate by ozonation is predicted using the enhancement factor model in this paper.
文摘The electrodeposition of coatings consisting of alternate zinc and nickel deposits produced by successive deposition from a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Coated samples have been evaluated in terms of surface appearance, surface morphologies and cross-sectional morphologies using scanning electron microscopy (SEM). The corrosion resistance of laminar coatings has been studied by means of salt spray accelerated testing and anodic polarization measurement. The results obtained showed that the corrosion performance of zinc-nickel laminar coatings was better than that of a single-layer zinc or nickel deposit with the same thickness, and the coatings with nickel sublayer adjacent to the steel substrate and zinc as the top layer had the best corrosion resistance. These results were in good agreement with the characteristics indicated in the morphologies of zinc-nickel laminar coatings after anodic polarisation measurement.
文摘In most industrial fluidization units, two- or three-stage cyclone systems are used to clean the product gases. To return the solids to the bed, these cyclones are fitted with diplegs. By pass of gas from the bed through the dipleg is partially overcome by the back pressure build-up in the dipleg and by adding a trickle valve at the bottom of the dipleg. Diplegs of primary cyclones, operating at a high solid loading behave differently from diplegs of secondary and tertiary cyclones which operate at low solid loading. Both types have been investigated by pressure drop measurements, visual observation and by measurements of the air flow rate flowing up the riser. The primary dipleg was also studied using electrical capacitance tomography. The results are reported hereafter and will give a first indication towards the right design of the dipleg and the selection of the trickle valve. The influence of gas flow in the dipleg on the conversion in a catalytic fluidized bed reactor is found to be negligible.
基金The project supported by the Basic Research Program of the Korea Science & Engineering Foundation (KOSEF) (No. R05-2001-000-01247-0)
文摘A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc. Scoria was able to act not only as dielectricpellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia.Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 ℃to 200 ℃, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.
基金Supported by Liaoning Provincial Natural Science Foundation(No.972050).
文摘A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.
基金The National Natural Science Foundation of China(No. 50306010) and the National Basic Research Program(973) of China(No. G1999022200)
文摘The adsorption capacity for vapor-phase elemental mercury(Hg0) of residual carbon separated from fly ash was studied in an attempt for the control of elemental mercury emissions from combustion processes. At low mercury concentrations(<200 μg/m3), unburned carbon had higher adsorption capacity than commercial activated carbon. The adsorbality of unburned carbon was also found to be source dependent. Isotherms of FS carbon(separated from fly ash of a power plant of Shishi in Fujian Province) were similar to those classified as typeⅡ. Isotherms of XJ carbon(separated from fly ash of a power plant of Jingcheng in Shanxi Province) were more like those classified as type Ⅲ. Due to the relatively low production costs, these residual carbons would likely be considerably more cost-effective for the full-scale removal of mercury from combustion flue gases than other technology.
基金Supported by Development Project of Shanghai Priority Academic Discipline
文摘The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260℃. The three reactions including methanol synthesisfrom CO and H_2, CO_2 and H_2, and methanol dehydration were chosen as the independent reactions.The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the modelwere obtained by using simplex method combined with genetic algorithm. The model is reliableaccording to statistical analysis and residual error analysis. The synergy effect of the reactionsover the bifunctional catalyst was compared with the effect for methanol synthesis catalyst underthe same conditions based on the model. The effects of syngas containing Na on the reactions werealso simulated.
基金This work was financially supported by the National Nat-ural Science Foundation of China(Grant No.50172004 and 50333070).
文摘Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5% which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.
文摘Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m 3·h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.