The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies...The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies and paleosols. Based on comprehensive analyses on the distribution of magnetic susceptibility and CaCO3 and paleo-ecology indicated by fossils in the region, it is considered that the sedimentation cycles resulted from dry-cold and warm-humid climate fluctuations. Magnetic susceptibility values and CaCO3 contents in stratigraphic sectors I, III, V and II, IV basically respectively present peaks and low vales, and the former three can in time correlate with MIS5a, MIS5c and MIS5e successively and the latter two with MIS5b and MIS5d. In addition, some horizons of eolian dune sands and the low vales of their magnetic susceptibility and CaCO3 are also correlated with 6 periods of cooling events indicated by the higher content of foraminifer Neogloboquadrina pachyderma (S.) documented in the V29—191 drill in the North Atlantic and the cold events recorded by δ 18O in the ice cores in GRIP, especially with 9 periods of dust events in Chinese Loess Plateau.展开更多
Many rivers in tropical and subtropical karst regions are supersaturated with respect to CaCO3 and have high water hardness. After flowing through waterfall sites, river water is usually softened, accompanied by tufa ...Many rivers in tropical and subtropical karst regions are supersaturated with respect to CaCO3 and have high water hardness. After flowing through waterfall sites, river water is usually softened, accompanied by tufa formation, which is simply described as a result of water turbulence in fast-flowing water. In this paper, a series of laboratory experiments are designed to simulate the hydrological conditions at waterfall sites. The influences of air-water interface, water flow velocity, aeration and solid-water interface on water softening are compared and evaluated on a quantitative basis. The results show that the enhanced inorganic CO2 outgassing due to sudden hydrological changes occurring at waterfall sites is the principal cause of water softening at waterfall sites. Both air-water interface area and water flow velocity increase as a result of the 'aeration effect', 'low pressure effect' and 'jet-flow effect' at waterfall sites, which greatly accelerates CO2 outgassing and therefore makes natural waters become highly supersaturated with respect to CaCO3, consequently resulting in much CaCO3 deposition and reduction of water hardness. Aeration, rapidly increasing air-water interface area and water flow velocity, proves to be effective in reducing water hardness. This study may provide a cheap, safe and effective way to soften water.展开更多
基金supported by the National Basic Research Program of China(Grant 2004CB720200)the National Natural Science Foundation of China(Grant 49971009)the Chinese Academy of Sciences(Grant KZCX2-SW-118).
文摘The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies and paleosols. Based on comprehensive analyses on the distribution of magnetic susceptibility and CaCO3 and paleo-ecology indicated by fossils in the region, it is considered that the sedimentation cycles resulted from dry-cold and warm-humid climate fluctuations. Magnetic susceptibility values and CaCO3 contents in stratigraphic sectors I, III, V and II, IV basically respectively present peaks and low vales, and the former three can in time correlate with MIS5a, MIS5c and MIS5e successively and the latter two with MIS5b and MIS5d. In addition, some horizons of eolian dune sands and the low vales of their magnetic susceptibility and CaCO3 are also correlated with 6 periods of cooling events indicated by the higher content of foraminifer Neogloboquadrina pachyderma (S.) documented in the V29—191 drill in the North Atlantic and the cold events recorded by δ 18O in the ice cores in GRIP, especially with 9 periods of dust events in Chinese Loess Plateau.
基金This research was supported jointly by the CRCG Seed Grant of the University of Hong Kongthe National Natural Science Foundation of China(Nos.90202003 and 40303014)
文摘Many rivers in tropical and subtropical karst regions are supersaturated with respect to CaCO3 and have high water hardness. After flowing through waterfall sites, river water is usually softened, accompanied by tufa formation, which is simply described as a result of water turbulence in fast-flowing water. In this paper, a series of laboratory experiments are designed to simulate the hydrological conditions at waterfall sites. The influences of air-water interface, water flow velocity, aeration and solid-water interface on water softening are compared and evaluated on a quantitative basis. The results show that the enhanced inorganic CO2 outgassing due to sudden hydrological changes occurring at waterfall sites is the principal cause of water softening at waterfall sites. Both air-water interface area and water flow velocity increase as a result of the 'aeration effect', 'low pressure effect' and 'jet-flow effect' at waterfall sites, which greatly accelerates CO2 outgassing and therefore makes natural waters become highly supersaturated with respect to CaCO3, consequently resulting in much CaCO3 deposition and reduction of water hardness. Aeration, rapidly increasing air-water interface area and water flow velocity, proves to be effective in reducing water hardness. This study may provide a cheap, safe and effective way to soften water.