期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Multi-cycle Climatic Fluctuation Record of the Last Interglacial Period:Typical Stratigraphic Section in the Salawusu River Valley on the Ordos Plateau,China 被引量:23
1
作者 LIBaosheng DavidDianZHANG +3 位作者 WENXiaohao DONGYuxiang ZHUYizhi JINHeling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第3期398-404,共7页
The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies... The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies and paleosols. Based on comprehensive analyses on the distribution of magnetic susceptibility and CaCO3 and paleo-ecology indicated by fossils in the region, it is considered that the sedimentation cycles resulted from dry-cold and warm-humid climate fluctuations. Magnetic susceptibility values and CaCO3 contents in stratigraphic sectors I, III, V and II, IV basically respectively present peaks and low vales, and the former three can in time correlate with MIS5a, MIS5c and MIS5e successively and the latter two with MIS5b and MIS5d. In addition, some horizons of eolian dune sands and the low vales of their magnetic susceptibility and CaCO3 are also correlated with 6 periods of cooling events indicated by the higher content of foraminifer Neogloboquadrina pachyderma (S.) documented in the V29—191 drill in the North Atlantic and the cold events recorded by δ 18O in the ice cores in GRIP, especially with 9 periods of dust events in Chinese Loess Plateau. 展开更多
关键词 last interglacial period dune events cold-warm climate cycles Salawusu River valley Inner Mongolia
下载PDF
Water Self-Softening Processes at Waterfall Sites 被引量:1
2
作者 CHENJing'an DavidDianZHANt~ +1 位作者 WANGShijie XIAOTangfu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第5期1154-1161,共8页
Many rivers in tropical and subtropical karst regions are supersaturated with respect to CaCO3 and have high water hardness. After flowing through waterfall sites, river water is usually softened, accompanied by tufa ... Many rivers in tropical and subtropical karst regions are supersaturated with respect to CaCO3 and have high water hardness. After flowing through waterfall sites, river water is usually softened, accompanied by tufa formation, which is simply described as a result of water turbulence in fast-flowing water. In this paper, a series of laboratory experiments are designed to simulate the hydrological conditions at waterfall sites. The influences of air-water interface, water flow velocity, aeration and solid-water interface on water softening are compared and evaluated on a quantitative basis. The results show that the enhanced inorganic CO2 outgassing due to sudden hydrological changes occurring at waterfall sites is the principal cause of water softening at waterfall sites. Both air-water interface area and water flow velocity increase as a result of the 'aeration effect', 'low pressure effect' and 'jet-flow effect' at waterfall sites, which greatly accelerates CO2 outgassing and therefore makes natural waters become highly supersaturated with respect to CaCO3, consequently resulting in much CaCO3 deposition and reduction of water hardness. Aeration, rapidly increasing air-water interface area and water flow velocity, proves to be effective in reducing water hardness. This study may provide a cheap, safe and effective way to soften water. 展开更多
关键词 water softening CO2 outgassing CaCO3 precipitation waterfall site
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部