The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type...The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope.展开更多
Objective To investigate the possibility of using bioaugmentation as a strategy for remediating quinoline-contaminated soil. Methods Microorganisms were introduced to the soil to assess the feasibility of enhancing th...Objective To investigate the possibility of using bioaugmentation as a strategy for remediating quinoline-contaminated soil. Methods Microorganisms were introduced to the soil to assess the feasibility of enhancing the removal of quinoline from quinoline-contaminated soil. Slurry-phase reactor was used to investigate the bioremediation of quinoline-contaminated soil. HPLC (Hewlett-Packard model 5050 with an UV detector) was used for analysis of quinoline concentration. Results The biodegradation rate of quinoline was increased through the introduction of Burkholderia pickettii. Quinoline, at a concentration of 1 mg/g soil, could be removed completely within 6 and 8 hours with and without combined effect of indigenous microbes, respectively. Although the indigenous microbes alone had no quinoline-degrading ability, they cooperated with the introduced quinoline-degrader to remove quinoline more quickly than the introduced microbes alone. Bioaugmentaion process was accelerated by the increase of inoculum size and bio-stimulation. The ratio of water to soil in slurry had no significant impact on bioremediation results. Conclusion Bioaugmetation is an effective way for bioremediation of quinoline-contaminated soil.展开更多
Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using...Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using aniline as the sole source of carbon and nitrogen by enrichment and isolation technique. The biomass was measured as optical density (OD) at 510 run using a spectrophotometer. Aniline concentrations were determined by spectrophotometer. The intermediates of aniline degradation were identified by GC/MS method. Results The bacterial consortium could grow at a range of aniline concentrations between 50 and 500 mg/L. The optimal pH and temperature for aniline degradation were determined to be 7.0 and 30, respectively. The presence of NH4NO3 as an additional nitrogen source (100-500 mg/L) had no adverse effect on bacterial growth and aniline degradation. The presence of heavy metal ions, such as Co2+, Zn2+, Ni2+, Mn2+ and Cu2+ had an inhibitory effect on aniline degradation. Conclusions The isolated bacterial consortium can degrade aniline up to 500 mg/L effectively and tolerate some heavy metal ions that commonly exist in chemical wastewater. It has a potential to be applied in the practical treatment of aniline-containing wastewater.展开更多
The water hammer in pipelines for the transportation of plumbum and Zn mining tailing, supplied by centrifugal pumps, was studied by a numerical model of water hammer for pseudo-homogeneous solid-liquid flows. The sim...The water hammer in pipelines for the transportation of plumbum and Zn mining tailing, supplied by centrifugal pumps, was studied by a numerical model of water hammer for pseudo-homogeneous solid-liquid flows. The simulation results were in good agreement with earlier experiments. The simulation result of air tanks installed on pipelines proved that the installation of air tanks is the most effective measure to reduce the water hammer associated with return flow caused by rapid closing of check valves. Other effective measures include the use of longer check-valve closure time or installation of the relief valves on the lower segments of the pipelines.展开更多
A detailed experimental research on characteristics of the hydrodynamicpressure spreading in the base gap of the arch inverted plunge pool was carried out. The features ofthe distributon of its ampitudes and spectral ...A detailed experimental research on characteristics of the hydrodynamicpressure spreading in the base gap of the arch inverted plunge pool was carried out. The features ofthe distributon of its ampitudes and spectral density and its characteristics in time domain fortwo conditions, i. e. , (1) a through gap and (2) a blind gap were given. The influence of the dampat the joint opening upon the hydrodynamic pressure inside the gap was also investigated.Accordingly, the stabilization mechanism of the arch invert plunge pool was worked out.展开更多
The 3-D turbulent flows in a valve pipe were described by the incompressibleReynolds-averaged Navier-Stokes equations with an RNG k-ε turbulence model. With the finite volumemethod and a body-fitted coordinate system...The 3-D turbulent flows in a valve pipe were described by the incompressibleReynolds-averaged Navier-Stokes equations with an RNG k-ε turbulence model. With the finite volumemethod and a body-fitted coordinate system, the discretised equations were solved by the SIMPLESTalgorithm. The numerical result of a cut-off valve with curved inlet shows the flow characteristicsand the main cause of energy loss when fluid flows through a valve. And then, the boundaries ofvalve were modified in order to reduce the energy loss. The computational results of modified valveshow that the numerical value of turbulent kinetic energy is lower, and that the modified design ofthe 3-D valve boundaries is much better. The analysis of the result also shows that RNG k-εturbulence model can successfully be used to predict the 3-D turbulent separated flows and thesecondary flow inside valve pipes.展开更多
Particle-laden gas flows past a circular cylinder at the Reynolds number of 2×10^(5) were numerically investigated. The Discrete Vortex Method (DVM) was employed to evaluate the unsteady gas flow fields and a Lag...Particle-laden gas flows past a circular cylinder at the Reynolds number of 2×10^(5) were numerically investigated. The Discrete Vortex Method (DVM) was employed to evaluate the unsteady gas flow fields and a Lagrangian approach was applied for tracking individual solid particles. The vortex patterns and the distributions of particles with different Stokes numbers were obtained. Numerical results show that: (1) at small Stokes number (St=0.01) the particles move with the fluid and could be found evenly throughout the flow, (2) the regions around the vortex cores, where few particles exist, become wider as the stokes number of particles increases from 0.01 to 1.0, (3) at middle Stokes number (St=1.0, 10) centrifugal forces throw the particles out of the wake vortices, (4) at high Stokes number (St=100, 1000) the particles are not affected by the vortices,and their motion is determined by their inertia effects.展开更多
This paper presents a study of the variation of the elevation of Tongguan, which is located in the backwater zone of the Sanmenxia Reservoir, in response to changes in flow runoff. The analysis indicated that the rise...This paper presents a study of the variation of the elevation of Tongguan, which is located in the backwater zone of the Sanmenxia Reservoir, in response to changes in flow runoff. The analysis indicated that the rise of the eleva- tion of Tongguan, which is defined as the stage corresponding to a discharge of 1000 m3/s at Tongguan station, is controlled by the stream energy. A close relationship existed between the elevation of Tongguan and the superimposed stream en- ergy that integrates the current and the preceding years’ flow and dam operation conditions. When the flow runoff remains relatively constant and the pool level of the dam has a rela- tively large range of variations, then the elevation of Tong- guan is primarily controlled by the dam operation conditions. On the other hand, if the flow runoff has a relatively large range of variations and the pool level of the dam remains relatively constant, then the elevation of Tongguan is primar- ily controlled by the flow conditions. These findings are of importance for optimizing the dam operation in order to lower and control the elevation of Tongguan, and therefore to minimize the backwater effect of the dam operation.展开更多
Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose cl...Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil on slope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sediment run-off system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be pre-dicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magni-tude, frequency and time interval of debris flows.展开更多
In recent years, the Lattice Boltzmann Method (LBM) has developed into an alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids. In order to propose LBM for high Reynolds...In recent years, the Lattice Boltzmann Method (LBM) has developed into an alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids. In order to propose LBM for high Reynolds number fluid flow applications, a subgrid turbulence model for LBM was introduced based on standard Smagorinsky subgrid model and Lattice Bhatnagar-Gross-Krook (LBGK) model. The subgrid LBGK model was subsequently used to simulate the two-dimensional driven cavity flow at high Reynolds numbers. The simulation results including distribution of stream lines, dimensionless velocities distribution, values of stream function, as well as location of vertex center, were compared with benchmark solutions, with satisfactory agreements.展开更多
In this paper the concentration profile in bed load layer is derived based onkinetic theory. According to observations, particles moving in near wall region behave differentlyduring ejection and sweeping of turbulence...In this paper the concentration profile in bed load layer is derived based onkinetic theory. According to observations, particles moving in near wall region behave differentlyduring ejection and sweeping of turbulence burst, as indicates that they are subject to differentinfluences from turbulence, and therefore, the forces acting on particles are not the same.Consequently, particles moving in bed load layer are classified into two groups, one lifted upwardby ejections, the other carried back to bed by sweepings, and the forces corresponding to upward anddownward motions are proposed. By solving the basic transport equation of kinetic theory, thevelocity distribution functions, upward and downward fluxes of particles in bed load layer arederived. Upon assumption of e-quilibrium sediment transport, concentration profile in bed load layeris obtained. Verification is also presented in this paper, which shows that the concentrationprofile produced by the relation proposed in this paper agrees with observations well.展开更多
As wave propagates into shallow water, the shoaling effect leads to increaseof wave height, and at a certain position, the wave will be breaking. The breaking wave is powerfulagents for generating turbulence, which pl...As wave propagates into shallow water, the shoaling effect leads to increaseof wave height, and at a certain position, the wave will be breaking. The breaking wave is powerfulagents for generating turbulence, which plays an important role in most of the fluid dynamicalprocesses in the surf zone, so a proper numerical model for describing the turbulent effect isneeded urgently. A numerical model is set up to simulate the wave breaking process, which consistsof a free surface model using the surface marker method and the vertical two-dimensional model thatsolves the flow equations. The turbulence is described by Large Eddy Simulation (LES) method wherethe larger turbulent features are simulated by solving the flow equations, and the small-scaleturbulence that is represented by a sub-grid model. A dynamic eddy viscosity sub-grid scale stressmodel has been used for the present simulation. The large eddy simulation model, which we presentedin this paper, can be used to study the propagation of a solitary wave in constant water depth andthe shoaling of a non-breaking solitary wave on a beach. To track free-surface movements, The TUMMACmethod is employed. By applying the model to wave breaking problem in the surf zone, we found thatthese model results compared very well with experimental data. In addition, this model is able toreproduce the complicated flow phenomena, especially the plunging breaker.展开更多
This paper is concerned with the research on the rational curve for thebucket of a spillway. A new type of rational curve against cavitation damage to spillway has beenproposed; and the numerical results show that the...This paper is concerned with the research on the rational curve for thebucket of a spillway. A new type of rational curve against cavitation damage to spillway has beenproposed; and the numerical results show that the proposed curve (gradually and continuously variedcurvature curve, abbreviated as GCVC curve) can greatly raise the minimum cavitation number andcause the distribution of water pressure on the curved surface more reasonable. The proposed curve(GCVC curve) is simple, and can be conveniently used in practical hydraulic engineering.展开更多
基金the China Postdoctoral Science Foundation (Project No.2004035349).
文摘The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope.
基金The work was supported by the National Natural Science Foundation of China (Grant No.50325824 29637010).
文摘Objective To investigate the possibility of using bioaugmentation as a strategy for remediating quinoline-contaminated soil. Methods Microorganisms were introduced to the soil to assess the feasibility of enhancing the removal of quinoline from quinoline-contaminated soil. Slurry-phase reactor was used to investigate the bioremediation of quinoline-contaminated soil. HPLC (Hewlett-Packard model 5050 with an UV detector) was used for analysis of quinoline concentration. Results The biodegradation rate of quinoline was increased through the introduction of Burkholderia pickettii. Quinoline, at a concentration of 1 mg/g soil, could be removed completely within 6 and 8 hours with and without combined effect of indigenous microbes, respectively. Although the indigenous microbes alone had no quinoline-degrading ability, they cooperated with the introduced quinoline-degrader to remove quinoline more quickly than the introduced microbes alone. Bioaugmentaion process was accelerated by the increase of inoculum size and bio-stimulation. The ratio of water to soil in slurry had no significant impact on bioremediation results. Conclusion Bioaugmetation is an effective way for bioremediation of quinoline-contaminated soil.
基金The work was supported by the National Natural Science Foundation of China (Grant No. 29637010)
文摘Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using aniline as the sole source of carbon and nitrogen by enrichment and isolation technique. The biomass was measured as optical density (OD) at 510 run using a spectrophotometer. Aniline concentrations were determined by spectrophotometer. The intermediates of aniline degradation were identified by GC/MS method. Results The bacterial consortium could grow at a range of aniline concentrations between 50 and 500 mg/L. The optimal pH and temperature for aniline degradation were determined to be 7.0 and 30, respectively. The presence of NH4NO3 as an additional nitrogen source (100-500 mg/L) had no adverse effect on bacterial growth and aniline degradation. The presence of heavy metal ions, such as Co2+, Zn2+, Ni2+, Mn2+ and Cu2+ had an inhibitory effect on aniline degradation. Conclusions The isolated bacterial consortium can degrade aniline up to 500 mg/L effectively and tolerate some heavy metal ions that commonly exist in chemical wastewater. It has a potential to be applied in the practical treatment of aniline-containing wastewater.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 3 790 19)
文摘The water hammer in pipelines for the transportation of plumbum and Zn mining tailing, supplied by centrifugal pumps, was studied by a numerical model of water hammer for pseudo-homogeneous solid-liquid flows. The simulation results were in good agreement with earlier experiments. The simulation result of air tanks installed on pipelines proved that the installation of air tanks is the most effective measure to reduce the water hammer associated with return flow caused by rapid closing of check valves. Other effective measures include the use of longer check-valve closure time or installation of the relief valves on the lower segments of the pipelines.
文摘A detailed experimental research on characteristics of the hydrodynamicpressure spreading in the base gap of the arch inverted plunge pool was carried out. The features ofthe distributon of its ampitudes and spectral density and its characteristics in time domain fortwo conditions, i. e. , (1) a through gap and (2) a blind gap were given. The influence of the dampat the joint opening upon the hydrodynamic pressure inside the gap was also investigated.Accordingly, the stabilization mechanism of the arch invert plunge pool was worked out.
文摘The 3-D turbulent flows in a valve pipe were described by the incompressibleReynolds-averaged Navier-Stokes equations with an RNG k-ε turbulence model. With the finite volumemethod and a body-fitted coordinate system, the discretised equations were solved by the SIMPLESTalgorithm. The numerical result of a cut-off valve with curved inlet shows the flow characteristicsand the main cause of energy loss when fluid flows through a valve. And then, the boundaries ofvalve were modified in order to reduce the energy loss. The computational results of modified valveshow that the numerical value of turbulent kinetic energy is lower, and that the modified design ofthe 3-D valve boundaries is much better. The analysis of the result also shows that RNG k-εturbulence model can successfully be used to predict the 3-D turbulent separated flows and thesecondary flow inside valve pipes.
文摘Particle-laden gas flows past a circular cylinder at the Reynolds number of 2×10^(5) were numerically investigated. The Discrete Vortex Method (DVM) was employed to evaluate the unsteady gas flow fields and a Lagrangian approach was applied for tracking individual solid particles. The vortex patterns and the distributions of particles with different Stokes numbers were obtained. Numerical results show that: (1) at small Stokes number (St=0.01) the particles move with the fluid and could be found evenly throughout the flow, (2) the regions around the vortex cores, where few particles exist, become wider as the stokes number of particles increases from 0.01 to 1.0, (3) at middle Stokes number (St=1.0, 10) centrifugal forces throw the particles out of the wake vortices, (4) at high Stokes number (St=100, 1000) the particles are not affected by the vortices,and their motion is determined by their inertia effects.
文摘This paper presents a study of the variation of the elevation of Tongguan, which is located in the backwater zone of the Sanmenxia Reservoir, in response to changes in flow runoff. The analysis indicated that the rise of the eleva- tion of Tongguan, which is defined as the stage corresponding to a discharge of 1000 m3/s at Tongguan station, is controlled by the stream energy. A close relationship existed between the elevation of Tongguan and the superimposed stream en- ergy that integrates the current and the preceding years’ flow and dam operation conditions. When the flow runoff remains relatively constant and the pool level of the dam has a rela- tively large range of variations, then the elevation of Tong- guan is primarily controlled by the dam operation conditions. On the other hand, if the flow runoff has a relatively large range of variations and the pool level of the dam remains relatively constant, then the elevation of Tongguan is primar- ily controlled by the flow conditions. These findings are of importance for optimizing the dam operation in order to lower and control the elevation of Tongguan, and therefore to minimize the backwater effect of the dam operation.
基金supported by the Basic Research Funds for Mountain Hazards-Special Support Domain of the Chinese Academy of Sciences(Grant No.99303)Assistance Project of the National Natural Science Foundation of China(Grant No.40071010).
文摘Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil on slope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sediment run-off system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be pre-dicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magni-tude, frequency and time interval of debris flows.
文摘In recent years, the Lattice Boltzmann Method (LBM) has developed into an alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids. In order to propose LBM for high Reynolds number fluid flow applications, a subgrid turbulence model for LBM was introduced based on standard Smagorinsky subgrid model and Lattice Bhatnagar-Gross-Krook (LBGK) model. The subgrid LBGK model was subsequently used to simulate the two-dimensional driven cavity flow at high Reynolds numbers. The simulation results including distribution of stream lines, dimensionless velocities distribution, values of stream function, as well as location of vertex center, were compared with benchmark solutions, with satisfactory agreements.
文摘In this paper the concentration profile in bed load layer is derived based onkinetic theory. According to observations, particles moving in near wall region behave differentlyduring ejection and sweeping of turbulence burst, as indicates that they are subject to differentinfluences from turbulence, and therefore, the forces acting on particles are not the same.Consequently, particles moving in bed load layer are classified into two groups, one lifted upwardby ejections, the other carried back to bed by sweepings, and the forces corresponding to upward anddownward motions are proposed. By solving the basic transport equation of kinetic theory, thevelocity distribution functions, upward and downward fluxes of particles in bed load layer arederived. Upon assumption of e-quilibrium sediment transport, concentration profile in bed load layeris obtained. Verification is also presented in this paper, which shows that the concentrationprofile produced by the relation proposed in this paper agrees with observations well.
文摘As wave propagates into shallow water, the shoaling effect leads to increaseof wave height, and at a certain position, the wave will be breaking. The breaking wave is powerfulagents for generating turbulence, which plays an important role in most of the fluid dynamicalprocesses in the surf zone, so a proper numerical model for describing the turbulent effect isneeded urgently. A numerical model is set up to simulate the wave breaking process, which consistsof a free surface model using the surface marker method and the vertical two-dimensional model thatsolves the flow equations. The turbulence is described by Large Eddy Simulation (LES) method wherethe larger turbulent features are simulated by solving the flow equations, and the small-scaleturbulence that is represented by a sub-grid model. A dynamic eddy viscosity sub-grid scale stressmodel has been used for the present simulation. The large eddy simulation model, which we presentedin this paper, can be used to study the propagation of a solitary wave in constant water depth andthe shoaling of a non-breaking solitary wave on a beach. To track free-surface movements, The TUMMACmethod is employed. By applying the model to wave breaking problem in the surf zone, we found thatthese model results compared very well with experimental data. In addition, this model is able toreproduce the complicated flow phenomena, especially the plunging breaker.
文摘This paper is concerned with the research on the rational curve for thebucket of a spillway. A new type of rational curve against cavitation damage to spillway has beenproposed; and the numerical results show that the proposed curve (gradually and continuously variedcurvature curve, abbreviated as GCVC curve) can greatly raise the minimum cavitation number andcause the distribution of water pressure on the curved surface more reasonable. The proposed curve(GCVC curve) is simple, and can be conveniently used in practical hydraulic engineering.