The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought ...The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought a severe catastrophe in New Orleans by combined effects of hurricane induced extreme sea environments and upper flood of the Mississippi River. Like the New Orleans City, Shanghai is located at the estuarine area of the Changjiang River and the combined effect of typhoon induced extreme sea en- vironments, flood peak runoff from the Changjiang River coupled with the spring tide is the dominate factor for disaster prevention design criteria. The Poisson-nested logistic trivariate compound extreme value distribution (PNLTCEYD) is a new type of joint probability model which is proposed by compounding a discrete distribution (typhoon occurring frequency) into a continuous multivariate joint distribution ( typhoon induced extreme events). The new model gives more reasonable predicted results for New Orleans and Shanghai disaster prevention design criteria.展开更多
Since 1972 Rita typhoon attacked on Dalian Port and induced severe catastrophe, we were studied on statistical prediction model of typhoon induced wave height and wind speed. With an increasing tendency of the natural...Since 1972 Rita typhoon attacked on Dalian Port and induced severe catastrophe, we were studied on statistical prediction model of typhoon induced wave height and wind speed. With an increasing tendency of the natural hazards frequency and intensity, risk assessment of some design codes for coastal defence infrastructures should be of paramount importance influencing the economic development and a lot of lifes in China. Comparison between existing extreme statistical model like Gumbel, Weibull, P-III distribution or Probable Maximum Typhoon/Hurricane (PMT/PMH), Design Basis Flood (DBF) with our 1975-1980 proposed (CEVD) model showed that all the planned, designed and constructed coastal infrastructures accepted the traditional safety regulations are menaced by possibility of future ty-phoon/hurricane disasters and cannot satisfy the safety requirements with the increasing tendency of the extreme natural hazards. Our first publication in US (J. of Waterway Port Coastal & Ocean Eng. ASCE, 1980, ww4) proposed an new model “Compound Extreme Value Distribution” used for China sea, after then the model was used in “Long term Distribution of Hurricane Characteristics” for Gulf of Mexico & Atlantic coasts, U.S. (OTC.1982). 2005 hurricane Katrina, Rita and 2012 hurricane Sandy induced disasters proved 1982 CEVD and CEVD has been developed into Multivariate Compound Extreme Value Distribution (MCEVD). 2006 MCEVD predicted extreme hazards in New Orleans, Gulf of Mexico and Philadelphia areas. 2013 typhoon Fitow induced disaster in China also proved MCEVD 2006 predicted results.展开更多
A wide open bottom story of a frame building is often expected by owners for use as a garage or shops.However,this leads to weak stories due to abrupt changes in lateral stiffness and often results in unexpected story...A wide open bottom story of a frame building is often expected by owners for use as a garage or shops.However,this leads to weak stories due to abrupt changes in lateral stiffness and often results in unexpected story collapse as observed in many previous earthquakes.To retrofit frame buildings that have experienced weak story damage,a tendon system is proposed in this study,which consists of a set of swaying columns and tendons.The swaying columns are used to uniformly redistribute the lateral deformation along the height,while the tendons provide extra lateral stiffness and renders the entire structural system a re-centering capability.To avoid unnecessary forces to swaying columns,pin-connections are used at the bottom.Tendons are placed over the entire story to gain large elastic displacements.Parametric analysis reveals that the swaying column,with a stiffness of about 0.9 times that of the weak story,and the tendons attached at the roof,with a stiffness of 0.04 times that of the weak story,can provide the optimal performance with a maximum residual story drift angle of less than 0.5%.Online hybrid tests were carried out,which demonstrated that uniformly distributed story drifts and acceptable residual deformation could be achieved by the proposed tendon system.展开更多
This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures us...This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan.展开更多
Earthquake engineering research and development have received much attention since the first half of the twentieth century. This valuable research presented a huge step forward in understanding earthquake hazard mitig...Earthquake engineering research and development have received much attention since the first half of the twentieth century. This valuable research presented a huge step forward in understanding earthquake hazard mitigation,which resulted in appreciable reduction of the effects of past earthquakes. Nevertheless,the 2011 Tohoku earthquake and the subsequent tsunami resulted in major damage. This paper presents the timeline of earthquake mitigation and recovery,as seen by the authors. Possible research directions where the authors think that many open questions still remain are identified. These are primarily based on the important lessons learned from the 2011 Tohoku earthquake.展开更多
Climate change has altered locally singletype disasters to large-scale compound disasters because of increasing intensity and frequency of extreme rainfall events.The compound disasters can combine small-scale floods,...Climate change has altered locally singletype disasters to large-scale compound disasters because of increasing intensity and frequency of extreme rainfall events.The compound disasters can combine small-scale floods,debris flows,shallow landslides,deep-seated landslides,and landslide lakes into a large-scale single disaster event.Although simulation models and evaluation tools are available for single-type disasters,no single model is well developed for compound disasters due to the difficulty of handling the interrelationship between two successive single-type disasters.This study proposes a structure for linking available single-type simulation models to evaluate compound disasters and provides a useful tool of decision making for warning and planning of disaster reduction.展开更多
Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s...Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed.展开更多
The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute,Kyoto University,Japan,19–21 March,2017....The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute,Kyoto University,Japan,19–21 March,2017.The Global Alliance seeks to contribute to enhancing disaster risk reduction(DRR) and disaster resilience through the collaboration of research organizations around the world.The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster RiskReduction 2015–2030 and its Science and Technology Roadmap.The summit reflected the international nature of collaborative research and action.A pre-conference questionnaire filled out by Global Alliance members identified323 research projects that are indicative of current research.These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action.Four discussion sessions focused on research that aims to deepen the understanding of disaster risks.Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance,resilience,and recovery.Discussion summaries were presentedin plenary sessions in support of outcomes for widely enhancing the science and policy of DRR.展开更多
Relocation is not typically considered the best planning option for post-disaster reconstruction and rehabilitation,but it may be necessary if the site has suffered severe damage or is at imminent risk.There is a grow...Relocation is not typically considered the best planning option for post-disaster reconstruction and rehabilitation,but it may be necessary if the site has suffered severe damage or is at imminent risk.There is a growing recognition that strong community participation is necessary in the post-disaster relocation decision-making process since relocation can have detrimental effects on a community’s livelihood,cultural system,and way of life,among others.However,the realization of this still needs to be improved.As of yet,few studies have examined a comprehensive account of meaningful community engagement in post-disaster relocation and reconstruction,particularly in developing countries.This study investigated what factors influenced local communities’ participation in post-disaster relocation and reconstruction works after the 2017Cyclone Dineo flood disaster in the Tsholotsho District of Zimbabwe.Qualitative research methods such as face-to-face interviews,observations,and focus groups were used to collect qualitative data from a purposive sample of 25 community members and 6 stakeholders.This empirical investigation showed that despite the fact that the relocation project was conceived as a community-centered project,there was no meaningful community engagement,due to the absence of a participatory framework or planning guidelines for stakeholder engagement,as well as the lack of political willingness among government officials.The study concluded that the lack of community involvement led to local communities abandoning the reconstruction sites because relocation projects failed to accommodate the cultural beliefs,place attachments,and livelihood concerns of local communities.This study suggested that it is imperative to enhance the awareness of government officials and other stakeholders about the importance of community participation for the effective implementation of post-disaster relocation works.Meaningful community participation can also provide avenues for incorporating local needs and concerns,cultural beliefs,and alternative and sustainable livelihood restoration,which are essential for effective reconstruction after disasters.This research aimed to enrich the academic discourse by providing valuable insights into the intricacies of postdisaster recovery initiatives in the country.展开更多
Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position a...Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.展开更多
For prevention and mitigation of typhoon disasters in China, in this paper a double layer nested multi-objective probability model of typhoon disaster zoning and prevention criteria is proposed. The multivariate compo...For prevention and mitigation of typhoon disasters in China, in this paper a double layer nested multi-objective probability model of typhoon disaster zoning and prevention criteria is proposed. The multivariate compound extreme value distribution (MCEVD) is used to predict the joint probability of seven typhoon characteristics and corresponding typhoon induced disasters. Predicted results can be used for both typhoon disaster zoning and corresponding prevention criteria along China coast.展开更多
The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conser...The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conservation principle. The results show that designing XA1(2) as low-sensitivity axis (3 × 10^-9 m/s^2) of accelerometer and designing YA1(2) and ZA1(2) as high-sensitivity axes (3 × 10^-10 m/s^2) are reasonable. The physical reason why the resolution of XA1(2) is one order of magnitude lower than YA1(2) and ZA1(2) is that non-conservative forces acting on GRACE satellites are mainly decomposed into YA1(2) and ZA1(2) in the orbital plane. Since XA1(2) is not orthogonal accurately to orbital plane during the development of accelerometer, the measurement of XA1(2) can not be thrown off entirely, but be reduced properly.展开更多
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is a...An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.展开更多
This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled a...This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.展开更多
This work addresses the integrated assessment of rockfall(including landslides) hazards and risk for S301, Z120, and Z128 highways, which are important transportation corridors to the world heritage site Jiuzhai Valle...This work addresses the integrated assessment of rockfall(including landslides) hazards and risk for S301, Z120, and Z128 highways, which are important transportation corridors to the world heritage site Jiuzhai Valley National Park in Sichuan, China. The highways are severely threatened by rockfalls or landslide events after the 2017 Ms 7.0 Jiuzhaigou earthquake. Field survey(September 14-18 th, 2017, May 15-20 th, 2018, and September 9-17 th, 2018), unmanned aerial vehicle(UAV), and satellite image identified high-relief rockfalls and road construction rockfalls or landslides along the highway. Rockfall hazard is qualitatively evaluated using block count, velocity, and flying height through a 3D rockfall simulation at local and regional scales. Rockfall risk is quantitatively assessed with rockfall event probability, propagation probability, spatial probability, and vulnerability for different block volume classes. Approximately 21.5%, 20.5%, and 5.3% of the road mileage was found to be subject to an unacceptable(UA) risk class for vehicles along S301, Z120, and Z128 highways, respectively. Approximately 20.1% and 3.3% of the road mileage belong to the UA risk class for tourists along Z120 and Z128 highways, respectively. Results highlighted that high-relief rockfall events were intensively located at K50 to K55(Guanmenzi to Ganheba) and K70 to K72(Jiudaoguai to Shangsizhai Village) road mileages along S301 highway and KZ18 to KZ22(Five Flower Lake to Arrow Bamboo Lake) road mileages, KZ30(Swan Lake to Virgin Forests), and KY10.5 kilometers in Jiuzhai Valley. Rockfalls in these locations were classified under the UA risk class and medium to very high hazard index. Road construction rockfalls were located at K67(Jiuzhai Paradise) and K75–K76 kilometers along S301 highway and KZ12 to KZ14(Rhino Lake to Nuorilang Waterfall), KZ16.5 to KZ17.5(Golden Bell Lake), KY5(Lower Seasonal Lake), and KY14(Upper Seasonal Lake) kilometers along Z120 and Z128 highway in Jiuzhai Valley. Rockfalls in these areas were within a reasonable practicable risk to UA risk class and very low to medium hazard index. Finally, defensive measures, including flexible nets, concrete walls, and artificial tunnels, could be selected appropriately on the basis of the rockfall hazard index and risk class. This study revealed the integration between qualitative rockfall hazard assessment and quantitative rockfall risk assessment, which is crucial in studying rockfall prevention and mitigation.展开更多
Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed...Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5-7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.展开更多
For prediction of the extreme significant wave height in the ocean areas where long term wave data are not available, the empirical method of extrapolating short term data (1 similar to3 years) is used in design pract...For prediction of the extreme significant wave height in the ocean areas where long term wave data are not available, the empirical method of extrapolating short term data (1 similar to3 years) is used in design practice. In this paper two methods are proposed to predict extreme significant wave height based on short-term daily maxima. According to the daa recorded by the Oceanographic Station of Liaodong Bay at the Bohai Sea, it is supposed that daily maximum wave heights are statistically independent. The data show that daily maximum wave heights obey log-normal distribution, and that the numbers of daily maxima vary from year to year, obeying binomial distribution. Based on these statistical characteristics, the binomial-log-normal compound extremum distribution is derived for prediction of extreme significant wave heights (50 similar to 100 years). For examination of its accuracy and validity, the prediction of extreme wave heights is based on 12 years' data at this station, and based on each 3 years' data respectively. The results show that with consideration of confidence intervals, the predicted wave heights based on 3 years' data are very close to those based on 12 years' data. The observed data in some ocean areas in the Atlantic Ocean and the North Sea show it is not correct to assume that daily maximum wave heights are statistically independent; they are subject to Markov chain condition, obeying log-normal distribution. In this paper an analytical method is derived to predict extreme wave heights in these cases. A comparison of the computations shows that the difference between the extreme wave heights based on the assumption that daily maxima are statistically independent and that they are subject to Markov Chain condition is smaller than 10%.展开更多
基金supported by the National Natural Science Foundation of China under contract No.50379051.
文摘The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought a severe catastrophe in New Orleans by combined effects of hurricane induced extreme sea environments and upper flood of the Mississippi River. Like the New Orleans City, Shanghai is located at the estuarine area of the Changjiang River and the combined effect of typhoon induced extreme sea en- vironments, flood peak runoff from the Changjiang River coupled with the spring tide is the dominate factor for disaster prevention design criteria. The Poisson-nested logistic trivariate compound extreme value distribution (PNLTCEYD) is a new type of joint probability model which is proposed by compounding a discrete distribution (typhoon occurring frequency) into a continuous multivariate joint distribution ( typhoon induced extreme events). The new model gives more reasonable predicted results for New Orleans and Shanghai disaster prevention design criteria.
文摘Since 1972 Rita typhoon attacked on Dalian Port and induced severe catastrophe, we were studied on statistical prediction model of typhoon induced wave height and wind speed. With an increasing tendency of the natural hazards frequency and intensity, risk assessment of some design codes for coastal defence infrastructures should be of paramount importance influencing the economic development and a lot of lifes in China. Comparison between existing extreme statistical model like Gumbel, Weibull, P-III distribution or Probable Maximum Typhoon/Hurricane (PMT/PMH), Design Basis Flood (DBF) with our 1975-1980 proposed (CEVD) model showed that all the planned, designed and constructed coastal infrastructures accepted the traditional safety regulations are menaced by possibility of future ty-phoon/hurricane disasters and cannot satisfy the safety requirements with the increasing tendency of the extreme natural hazards. Our first publication in US (J. of Waterway Port Coastal & Ocean Eng. ASCE, 1980, ww4) proposed an new model “Compound Extreme Value Distribution” used for China sea, after then the model was used in “Long term Distribution of Hurricane Characteristics” for Gulf of Mexico & Atlantic coasts, U.S. (OTC.1982). 2005 hurricane Katrina, Rita and 2012 hurricane Sandy induced disasters proved 1982 CEVD and CEVD has been developed into Multivariate Compound Extreme Value Distribution (MCEVD). 2006 MCEVD predicted extreme hazards in New Orleans, Gulf of Mexico and Philadelphia areas. 2013 typhoon Fitow induced disaster in China also proved MCEVD 2006 predicted results.
基金National Science Foundation for Distinguished Young Scholars under Grant No.52125806the Heilongjiang Touyan Innovation Team Program under Grant No.3016。
文摘A wide open bottom story of a frame building is often expected by owners for use as a garage or shops.However,this leads to weak stories due to abrupt changes in lateral stiffness and often results in unexpected story collapse as observed in many previous earthquakes.To retrofit frame buildings that have experienced weak story damage,a tendon system is proposed in this study,which consists of a set of swaying columns and tendons.The swaying columns are used to uniformly redistribute the lateral deformation along the height,while the tendons provide extra lateral stiffness and renders the entire structural system a re-centering capability.To avoid unnecessary forces to swaying columns,pin-connections are used at the bottom.Tendons are placed over the entire story to gain large elastic displacements.Parametric analysis reveals that the swaying column,with a stiffness of about 0.9 times that of the weak story,and the tendons attached at the roof,with a stiffness of 0.04 times that of the weak story,can provide the optimal performance with a maximum residual story drift angle of less than 0.5%.Online hybrid tests were carried out,which demonstrated that uniformly distributed story drifts and acceptable residual deformation could be achieved by the proposed tendon system.
文摘This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan.
文摘Earthquake engineering research and development have received much attention since the first half of the twentieth century. This valuable research presented a huge step forward in understanding earthquake hazard mitigation,which resulted in appreciable reduction of the effects of past earthquakes. Nevertheless,the 2011 Tohoku earthquake and the subsequent tsunami resulted in major damage. This paper presents the timeline of earthquake mitigation and recovery,as seen by the authors. Possible research directions where the authors think that many open questions still remain are identified. These are primarily based on the important lessons learned from the 2011 Tohoku earthquake.
基金supported by National Science Council,Taiwan,China.The project name is Numerical Approach to Estimate the Stability and Deformation Response of Landslide Dams(NSC99-2625-M-006-004)and Modeling of The Compound Disaster in Hsiaolin Village(NSC99-2218-E-006-238)
文摘Climate change has altered locally singletype disasters to large-scale compound disasters because of increasing intensity and frequency of extreme rainfall events.The compound disasters can combine small-scale floods,debris flows,shallow landslides,deep-seated landslides,and landslide lakes into a large-scale single disaster event.Although simulation models and evaluation tools are available for single-type disasters,no single model is well developed for compound disasters due to the difficulty of handling the interrelationship between two successive single-type disasters.This study proposes a structure for linking available single-type simulation models to evaluate compound disasters and provides a useful tool of decision making for warning and planning of disaster reduction.
基金National Natural Science Foundation of China under Grant Nos.51988101,51978613 and 52278374the Chinese Program of Introducing Talents of Discipline to University(the 111 Project,B18047)。
文摘Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed.
文摘The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute,Kyoto University,Japan,19–21 March,2017.The Global Alliance seeks to contribute to enhancing disaster risk reduction(DRR) and disaster resilience through the collaboration of research organizations around the world.The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster RiskReduction 2015–2030 and its Science and Technology Roadmap.The summit reflected the international nature of collaborative research and action.A pre-conference questionnaire filled out by Global Alliance members identified323 research projects that are indicative of current research.These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action.Four discussion sessions focused on research that aims to deepen the understanding of disaster risks.Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance,resilience,and recovery.Discussion summaries were presentedin plenary sessions in support of outcomes for widely enhancing the science and policy of DRR.
文摘Relocation is not typically considered the best planning option for post-disaster reconstruction and rehabilitation,but it may be necessary if the site has suffered severe damage or is at imminent risk.There is a growing recognition that strong community participation is necessary in the post-disaster relocation decision-making process since relocation can have detrimental effects on a community’s livelihood,cultural system,and way of life,among others.However,the realization of this still needs to be improved.As of yet,few studies have examined a comprehensive account of meaningful community engagement in post-disaster relocation and reconstruction,particularly in developing countries.This study investigated what factors influenced local communities’ participation in post-disaster relocation and reconstruction works after the 2017Cyclone Dineo flood disaster in the Tsholotsho District of Zimbabwe.Qualitative research methods such as face-to-face interviews,observations,and focus groups were used to collect qualitative data from a purposive sample of 25 community members and 6 stakeholders.This empirical investigation showed that despite the fact that the relocation project was conceived as a community-centered project,there was no meaningful community engagement,due to the absence of a participatory framework or planning guidelines for stakeholder engagement,as well as the lack of political willingness among government officials.The study concluded that the lack of community involvement led to local communities abandoning the reconstruction sites because relocation projects failed to accommodate the cultural beliefs,place attachments,and livelihood concerns of local communities.This study suggested that it is imperative to enhance the awareness of government officials and other stakeholders about the importance of community participation for the effective implementation of post-disaster relocation works.Meaningful community participation can also provide avenues for incorporating local needs and concerns,cultural beliefs,and alternative and sustainable livelihood restoration,which are essential for effective reconstruction after disasters.This research aimed to enrich the academic discourse by providing valuable insights into the intricacies of postdisaster recovery initiatives in the country.
基金supported by the National Natural Science Foundation of China (Grant No 40674038)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant Nos KZCX2-YW-143 and KZCX2-YW-202)+1 种基金the National High Technology Research and Development Program of China (863) (Grant Nos 2009AA12Z138 and 2006AA09Z153)the Grant-in-Aid for Scientific Research of Japan (Grant No B19340129)
文摘Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.
基金the National Natural Science Foundation of China (Grant No. 50679076)the Office of State Flood Control and Drought Relief Headquarters of China (Grant No. 20060120)
文摘For prevention and mitigation of typhoon disasters in China, in this paper a double layer nested multi-objective probability model of typhoon disaster zoning and prevention criteria is proposed. The multivariate compound extreme value distribution (MCEVD) is used to predict the joint probability of seven typhoon characteristics and corresponding typhoon induced disasters. Predicted results can be used for both typhoon disaster zoning and corresponding prevention criteria along China coast.
基金Supported by the Funds of Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No KZCX2-YW-202, the National High-Tech Research and Development Programme of China under Grant No 2006AA09Z153, and the National Natural Science Foundation of China under Grant Nos 40674038 and 40674013.The authors greatly appreciate the helpful and constructive discussion from Professor J. Luo, School of Physics, Huazhong University of Science and Technology, China and Dr P. L. Xu, Disaster Prevention Research Institute, Kyoto University, Japan.
文摘The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conservation principle. The results show that designing XA1(2) as low-sensitivity axis (3 × 10^-9 m/s^2) of accelerometer and designing YA1(2) and ZA1(2) as high-sensitivity axes (3 × 10^-10 m/s^2) are reasonable. The physical reason why the resolution of XA1(2) is one order of magnitude lower than YA1(2) and ZA1(2) is that non-conservative forces acting on GRACE satellites are mainly decomposed into YA1(2) and ZA1(2) in the orbital plane. Since XA1(2) is not orthogonal accurately to orbital plane during the development of accelerometer, the measurement of XA1(2) can not be thrown off entirely, but be reduced properly.
基金This work was partly supported by the Japan Society for the Promotion of Science (JSPS) for RONPAKU program by Foundation for University Key Teacher by the Ministry of Education of China
文摘An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.
基金This research was financially supported partially by the National Science Foundation of Japan under grant No.10555173 This work was partially supported by the Scholarship from Japan Ministry of Education,Science and Culture.
文摘This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.
基金supported by research funds awarded by the Key Research & Development Program of Sichuan Province (No. 2017SZYZF0008, No. 2019YFS0489)
文摘This work addresses the integrated assessment of rockfall(including landslides) hazards and risk for S301, Z120, and Z128 highways, which are important transportation corridors to the world heritage site Jiuzhai Valley National Park in Sichuan, China. The highways are severely threatened by rockfalls or landslide events after the 2017 Ms 7.0 Jiuzhaigou earthquake. Field survey(September 14-18 th, 2017, May 15-20 th, 2018, and September 9-17 th, 2018), unmanned aerial vehicle(UAV), and satellite image identified high-relief rockfalls and road construction rockfalls or landslides along the highway. Rockfall hazard is qualitatively evaluated using block count, velocity, and flying height through a 3D rockfall simulation at local and regional scales. Rockfall risk is quantitatively assessed with rockfall event probability, propagation probability, spatial probability, and vulnerability for different block volume classes. Approximately 21.5%, 20.5%, and 5.3% of the road mileage was found to be subject to an unacceptable(UA) risk class for vehicles along S301, Z120, and Z128 highways, respectively. Approximately 20.1% and 3.3% of the road mileage belong to the UA risk class for tourists along Z120 and Z128 highways, respectively. Results highlighted that high-relief rockfall events were intensively located at K50 to K55(Guanmenzi to Ganheba) and K70 to K72(Jiudaoguai to Shangsizhai Village) road mileages along S301 highway and KZ18 to KZ22(Five Flower Lake to Arrow Bamboo Lake) road mileages, KZ30(Swan Lake to Virgin Forests), and KY10.5 kilometers in Jiuzhai Valley. Rockfalls in these locations were classified under the UA risk class and medium to very high hazard index. Road construction rockfalls were located at K67(Jiuzhai Paradise) and K75–K76 kilometers along S301 highway and KZ12 to KZ14(Rhino Lake to Nuorilang Waterfall), KZ16.5 to KZ17.5(Golden Bell Lake), KY5(Lower Seasonal Lake), and KY14(Upper Seasonal Lake) kilometers along Z120 and Z128 highway in Jiuzhai Valley. Rockfalls in these areas were within a reasonable practicable risk to UA risk class and very low to medium hazard index. Finally, defensive measures, including flexible nets, concrete walls, and artificial tunnels, could be selected appropriately on the basis of the rockfall hazard index and risk class. This study revealed the integration between qualitative rockfall hazard assessment and quantitative rockfall risk assessment, which is crucial in studying rockfall prevention and mitigation.
文摘Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5-7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.
基金This project was supported by the 9-th National Five-Year Key Program of China 96-922-03-03
文摘For prediction of the extreme significant wave height in the ocean areas where long term wave data are not available, the empirical method of extrapolating short term data (1 similar to3 years) is used in design practice. In this paper two methods are proposed to predict extreme significant wave height based on short-term daily maxima. According to the daa recorded by the Oceanographic Station of Liaodong Bay at the Bohai Sea, it is supposed that daily maximum wave heights are statistically independent. The data show that daily maximum wave heights obey log-normal distribution, and that the numbers of daily maxima vary from year to year, obeying binomial distribution. Based on these statistical characteristics, the binomial-log-normal compound extremum distribution is derived for prediction of extreme significant wave heights (50 similar to 100 years). For examination of its accuracy and validity, the prediction of extreme wave heights is based on 12 years' data at this station, and based on each 3 years' data respectively. The results show that with consideration of confidence intervals, the predicted wave heights based on 3 years' data are very close to those based on 12 years' data. The observed data in some ocean areas in the Atlantic Ocean and the North Sea show it is not correct to assume that daily maximum wave heights are statistically independent; they are subject to Markov chain condition, obeying log-normal distribution. In this paper an analytical method is derived to predict extreme wave heights in these cases. A comparison of the computations shows that the difference between the extreme wave heights based on the assumption that daily maxima are statistically independent and that they are subject to Markov Chain condition is smaller than 10%.