期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Enhancing the resolution of sparse rock property measurements using machine learning and random field theory 被引量:1
1
作者 Jiawei Xie Jinsong Huang +3 位作者 Fuxiang Zhang Jixiang He Kaifeng Kang Yunqiang Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3924-3936,共13页
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad... The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China. 展开更多
关键词 Wireline logs Core characterization Compressional wave travel time Machine learning Random field theory
下载PDF
Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method 被引量:1
2
作者 Faming Huang Zuokui Teng +4 位作者 Chi Yao Shui-Hua Jiang Filippo Catani Wei Chen Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期213-230,共18页
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a... In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors. 展开更多
关键词 Landslide susceptibility prediction Conditioning factor errors Low-pass filter method Machine learning models Interpretability analysis
下载PDF
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:1
3
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 Landslide susceptibility prediction Random landslide position errors Uncertainty analysis Multi-layer perceptron Random forest Semi-supervised machine learning
下载PDF
Probabilistic back-analysis of rainfall-induced landslides for slope reliability prediction with multi-source information
4
作者 Shui-Hua Jiang Hong-Hu Jie +2 位作者 Jiawei Xie Jinsong Huang Chuang-Bing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3575-3594,共20页
Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(includi... Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China. 展开更多
关键词 Rainfall-induced landslide Spatial variability Probabilistic back-analysis Slope reliability analysis Bayesian updating
下载PDF
Application of multi-algorithm ensemble methods in high-dimensional and small-sample data of geotechnical engineering:A case study of swelling pressure of expansive soils
5
作者 Chao Li Lei Wang +1 位作者 Jie Li Yang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1896-1917,共22页
Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data... Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature. 展开更多
关键词 Expansive soils Swelling pressure Machine learning(ML) Multi-algorithm ensemble Sensitivity analysis
下载PDF
Uncertainties of landslide susceptibility prediction:influences of different study area scales and mapping unit scales
6
作者 Faming Huang Yu Cao +4 位作者 Wenbin Li Filippo Catani Guquan Song Jinsong Huang Changshi Yu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期143-172,共30页
This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci... This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit. 展开更多
关键词 Landslide susceptibility prediction Uncertainty analysis Study areas scales Mapping unit scales Slope units Random forest
下载PDF
Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors 被引量:8
7
作者 Zhilu Chang Filippo Catani +4 位作者 Faming Huang Gengzhe Liu Sansar Raj Meena Jinsong Huang Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1127-1143,共17页
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose... To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention. 展开更多
关键词 Landslide susceptibility prediction(LSP) Slope unit Multi-scale segmentation method(MSS) Heterogeneity of conditioning factors Machine learning models
下载PDF
Uncertainties of landslide susceptibility prediction considering different landslide types 被引量:2
8
作者 Faming Huang Haowen Xiong +3 位作者 Chi Yao Filippo Catani Chuangbing Zhou Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2954-2972,共19页
Most literature related to landslide susceptibility prediction only considers a single type of landslide,such as colluvial landslide,rock fall or debris flow,rather than different landslide types,which greatly affects... Most literature related to landslide susceptibility prediction only considers a single type of landslide,such as colluvial landslide,rock fall or debris flow,rather than different landslide types,which greatly affects susceptibility prediction performance.To construct efficient susceptibility prediction considering different landslide types,Huichang County in China is taken as example.Firstly,105 rock falls,350 colluvial landslides and 11 related environmental factors are identified.Then four machine learning models,namely logistic regression,multi-layer perception,support vector machine and C5.0 decision tree are applied for susceptibility modeling of rock fall and colluvial landslide.Thirdly,three different landslide susceptibility prediction(LSP)models considering landslide types based on C5.0 decision tree with excellent performance are constructed to generate final landslide susceptibility:(i)united method,which combines all landslide types directly;(ii)probability statistical method,which couples analyses of susceptibility indices under different landslide types based on probability formula;and(iii)maximum comparison method,which selects the maximum susceptibility index through comparing the predicted susceptibility indices under different types of landslides.Finally,uncertainties of landslide susceptibility are assessed by prediction accuracy,mean value and standard deviation.It is concluded that LSP results of the three coupled models considering landslide types basically conform to the spatial occurrence patterns of landslides in Huichang County.The united method has the best susceptibility prediction performance,followed by the probability method and maximum susceptibility method.More cases are needed to verify this result in-depth.LSP considering different landslide types is superior to that taking only a single type of landslide into account. 展开更多
关键词 Landslide susceptibility Landslide type Rock fall Colluvial landslides Machine learning models
下载PDF
Surrogate modeling for unsaturated infiltration via the physics and equality-constrained artificial neural networks 被引量:1
9
作者 Peng Lan Jingjing Su Sheng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2282-2295,共14页
Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but t... Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration. 展开更多
关键词 Richards equation(RE) Unsaturated infiltration Data-driven solutions Numerical modeling Machine learning(ML)
下载PDF
Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions 被引量:11
10
作者 Meghna Sharma Neelima Satyam Krishna RReddy 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期705-716,共12页
Microbially induced calcite precipitation(MICP)is a recently developed technique for microbiological ground improvement that has been applied for mitigating various geotechnical challenges.However,the major challenges... Microbially induced calcite precipitation(MICP)is a recently developed technique for microbiological ground improvement that has been applied for mitigating various geotechnical challenges.However,the major challenges,such as calcite precipitation uniformity,presence of different bacteria,cementation solution optimization for cost reduction,and implementation under non-sterile and uncontrolled field environment are still not fully explored and require detailed investigation before field application.This study aims to address these challenges of MICP to improve the geotechnical properties of sandy soils.Several series of experiments were conducted using poorly graded Narmada River(India)sand,which were subjected to various biotreatment schemes and tested for unconfined compressive strength(UCS),split tensile strength(STS),ultrasonic pulse velocity(UPV),hydraulic conductivity(after 6 d,12 d,and 18 d of treatment),and calcite content.The microstructure of sand was examined through a scanning electron microscope(SEM).Initially,the sand was individually augmented with two non-pathogenic bacterial strains,i.e.Sporosarcina(S.)pasteurii and Bacillus(B.)sphaericus.The stopped-flow injection method was adopted to provide cementation solutions at three different durations(treatment cycle)of 12 h,24 h,and 48 h and three different pore volumes(PVs)of 1,0.75,and 0.5.The pore volume here refers to the porosity which is expressed as a ratio,i.e.a porosity of 50%was used as 0.5.The results showed rock-like behaviors of biocemented sand with the UCS,STS,and UPV enhancement up to 2333 kPa,437 kPa,and 2670 m/s,respectively.The hydraulic conductivity reduction of 96.6%was achieved by 12%of calcite formation after 18 d of treatment using Sporosarcina pasteurii,12-h treatment cycle,and one pore volume of cementation media in each cycle.Overall,a 24-h treatment cycle and 0.5-pore volume cementation solution were found to be the optimal treatment which was effective and economical to achieve heavily cemented,rock-type biocemented sand using both bacteria. 展开更多
关键词 BACTERIA Microbially induced calcite precipitation (MICP) Soil stabilization Microstructure Calcite content
下载PDF
Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms 被引量:20
11
作者 Song-Shun Lin Shui-Long Shen +1 位作者 Ning Zhang Annan Zhou 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期81-92,共12页
This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning technique... This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method. 展开更多
关键词 EPB shield machine Advancing speed prediction Intelligent models Empirical analysis Tunnel excavation
下载PDF
Influence of brittleness and confining stress on rock cuttability based on rock indentation tests 被引量:6
12
作者 WANG Shao-feng TANG Yu WANG Shan-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2786-2800,共15页
In order to understand the influence of brittleness and confining stress on rock cuttability,the indentation tests were carried out by a conical pick on the four types of rocks.Then,the experimental results were utili... In order to understand the influence of brittleness and confining stress on rock cuttability,the indentation tests were carried out by a conical pick on the four types of rocks.Then,the experimental results were utilized to take regression analysis.The eight sets of normalized regression models were established for reflecting the relationships of peak indentation force(PIF)and specific energy(SE)with brittleness index and uniaxial confining stress.The regression analyses present that these regression models have good prediction performance.The regressive results indicate that brittleness indices and uniaxial confining stress conditions have non-linear effects on the rock cuttability that is determined by PIF and SE.Finally,the multilayer perceptual neural network was used to measure the importance weights of brittleness index and uniaxial confining stress upon the influence for rock cuttability.The results indicate that the uniaxial confining stress is more significant than brittleness index for influencing the rock cuttability. 展开更多
关键词 rock cuttability brittleness index uniaxial confining pressures regression analysis multilayer perceptual neural network importance analysis
下载PDF
Prediction of Disc Cutter Life During Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network 被引量:15
13
作者 Khalid Elbaz Shui-Long Shen +2 位作者 Annan Zhou Zhen-Yu Yin Hai-Min Lyu 《Engineering》 SCIE EI 2021年第2期238-251,共14页
Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cut... Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cutter life(Hf)by integrating a group method of data handling(GMDH)-type neural network(NN)with a genetic algorithm(GA).The efficiency and effectiveness of the GMDH network structure are optimized by the GA,which enables each neuron to search for its optimum connections set from the previous layer.With the proposed model,monitoring data including the shield performance database,disc cutter consumption,geological conditions,and operational parameters can be analyzed.To verify the performance of the proposed model,a case study in China is presented and a database is adopted to illustrate the excellence of the hybrid model.The results indicate that the hybrid model predicts disc cutter life with high accuracy.The sensitivity analysis reveals that the penetration rate(PR)has a significant influence on disc cutter life.The results of this study can be beneficial in both the planning and construction stages of shield tunneling. 展开更多
关键词 Disc cutter life Shield tunneling Operational parameters GMDH-GA
下载PDF
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:9
14
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) Gated recurrent unit(GRU)neural network
下载PDF
Uncertainty pattern in landslide susceptibility prediction modelling:Effects of different landslide boundaries and spatial shape expressions 被引量:8
15
作者 Faming Huang Jun Yan +4 位作者 Xuanmei Fan Chi Yao Jinsong Huang Wei Chen Haoyuan Hong 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期62-77,共16页
In some studies on landslide susceptibility mapping(LSM),landslide boundary and spatial shape characteristics have been expressed in the form of points or circles in the landslide inventory instead of the accurate pol... In some studies on landslide susceptibility mapping(LSM),landslide boundary and spatial shape characteristics have been expressed in the form of points or circles in the landslide inventory instead of the accurate polygon form.Different expressions of landslide boundaries and spatial shapes may lead to substantial differences in the distribution of predicted landslide susceptibility indexes(LSIs);moreover,the presence of irregular landslide boundaries and spatial shapes introduces uncertainties into the LSM.To address this issue by accurately drawing polygonal boundaries based on LSM,the uncertainty patterns of LSM modelling under two different landslide boundaries and spatial shapes,such as landslide points and circles,are compared.Within the research area of Ruijin City in China,a total of 370 landslides with accurate boundary information are obtained,and 10 environmental factors,such as slope and lithology,are selected.Then,correlation analyses between the landslide boundary shapes and selected environmental factors are performed via the frequency ratio(FR)method.Next,a support vector machine(SVM)and random forest(RF)based on landslide points,circles and accurate landslide polygons are constructed as point-,circle-and polygon-based SVM and RF models,respectively,to address LSM.Finally,the prediction capabilities of the above models are compared by computing their statistical accuracy using receiver operating characteristic analysis,and the uncertainties of the predicted LSIs under the above models are discussed.The results show that using polygonal surfaces with a higher reliability and accuracy to express the landslide boundary and spatial shape can provide a markedly improved LSM accuracy,compared to those based on the points and circles.Moreover,a higher degree of uncertainty of LSM modelling is present in the expression of points because there are too few grid units acting as model input variables.Additionally,the expression of the landslide boundary as circles introduces errors in measurement and is not as accurate as the polygonal boundary in most LSM modelling cases.In addition,the results under different conditions show that the polygon-based models have a higher LSM accuracy,with lower mean values and larger standard deviations compared with the point-and circle-based models.Finally,the overall LSM accuracy of the RF is superior to that of the SVM,and similar patterns of landslide boundary and spatial shape affecting the LSM modelling are reflected in the SVM and RF models. 展开更多
关键词 Landslide boundary Landslide susceptibility mapping Machine learning Uncertainty analysis Frequency ratio
下载PDF
Artificial neural network optimized by differential evolution for predicting diameters of jet grouted columns 被引量:6
16
作者 Pierre Guy Atangana Njock Shui-Long Shen +1 位作者 Annan Zhou Giuseppe Modoni 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1500-1512,共13页
A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computation... A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computational method adopts the DE algorithm to tackle the difficulties in the training and performance of neural networks and optimize the four quintessential hyper-parameters(i.e.the epoch size,the number of neurons in a hidden layer,the number of hidden layers,and the regularization parameter) that govern the neural network efficacy.This approach is further enhanced by a stochastic gradient optimization algorithm to allow ’expensive’ computation efforts.The ANN-DE is first trained using a prepared jet grouting dataset,then verified and compared with the prevalent machine learning tools,i.e.neural networks and support vector machine(SVM).The results show that,the ANN-DE outperforms the existing methods for predicting the diameter of jet grouting columns since it well balances training efficiency and model performance.Specifically,the ANN-DE achieved root mean square error(RMSE)values of 0.90603 and 0.92813 for the training and testing phases,respectively.The corresponding values were 0.8905 and 0.9006 for the optimized ANN,then,0.87569 and 0.89968 for the optimized SVM,respectively.The proposed paradigm is bound to be useful for solving various geotechnical engineering problems regardless of multi-dimension and nonlinearity. 展开更多
关键词 Artificial neural network(ANN) Differential evolution(DE) Jet grouting Model optimization REGULARIZATION
下载PDF
Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm 被引量:6
17
作者 Tao Yan Shui-Long Shen +1 位作者 Annan Zhou Xiangsheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1292-1303,共12页
This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two le... This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two learner layers: a primary learner’s layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index(TPI) and field penetration index(FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method(EM) and silhouette coefficient(Si) are employed to determine the types of geological characteristics(K) in a Kmeans++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics. 展开更多
关键词 Geological characteristics Stacking classification algorithm(SCA) K-fold cross-validation(K-CV) K-means++
下载PDF
Responses of calcareous sand foundations to variations of groundwater table and applied loads 被引量:5
18
作者 Dingfeng Cao Sanjay Kumar Shukla +3 位作者 Linqing Yang Chengchao Guo Jinghong Wu Fuming Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1266-1279,共14页
The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rar... The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rarely reported.In this study,a laboratory model test and an in situ monitoring test were conducted.An optical frequency domain reflectometer(OFDR)with high spatial resolution(1 mm)and high accuracy(10-6)was used to record the soil strain responses to groundwater table and varied loads.The results indicated that the fiber-optic measurements can accurately locate the swelling and compressive zones.During the loading process,the interlock between calcareous sand particles was detected,which increased the internal friction angle of soil.The foundation deformation above the sliding surface was dominated by compression,and the soil was continuously compressed beneath the sliding surface.After 26e48 h,calcareous sand swelling occurred gradually above the water table,which was primarily dependent on capillary water.The swelling of the soil beneath the groundwater table was completed rapidly within less than 2 h.When the groundwater table and load remain constant,the compression creep behavior can be described by the Yasong-Wang model with R2¼0.993.The daily periodically varying in situ deformation of calcareous sand primarily occurs between the highest and lowest groundwater tables,i.e.4.2e6.2 m deep.The tuff interlayers with poor water absorption capacity do not swell or compress,but they produce compressive strain under the influence of deformed calcareous sand layers. 展开更多
关键词 Distributed fiber optic sensing(DFOS) Calcareous sand Optical fiber Optical frequency domain reflectometer (OFDR) Soil foundation settlement
下载PDF
Identification of Contaminant Source Characteristics and Monitoring Network Design in Groundwater Aquifers: An Overview 被引量:3
19
作者 Mahsa Amirabdollahian Bithin Datta 《Journal of Environmental Protection》 2013年第5期26-41,共16页
The groundwater system is often polluted by different sources of contamination where the sources are difficult to detect. The presence of contamination in groundwater poses significant challenges to its delineation an... The groundwater system is often polluted by different sources of contamination where the sources are difficult to detect. The presence of contamination in groundwater poses significant challenges to its delineation and quantification. The remediation of a contaminated site requires an optimal decision making system to identify the pollutant source characteristics accurately and efficiently. The source characteristics are generally identified using contaminant concentration measurements from arbitrary or planned monitoring locations. To effectively characterize the sources of pollution, the monitoring locations should be selected appropriately. An efficient monitoring network will result in satisfactory characterization of contaminant sources. On the other hand, an appropriate design of monitoring network requires reliable source characteristics. A coupled iterative sequential source identification and dynamic monitoring network design, improves substantially the accuracy of source identification model. This paper reviews different source identification and monitoring network design methods in groundwater contaminant sites. Further, the models for sequential integration of these two models are presented. The effective integration of source identification and dedicated monitoring network design models, distributed sources, parameter uncertainty, and pollutant geo-chemistry are some of the issues which need to be addressed in efficient, accurate and widely applicable methodologies for identification of unknown pollutant sources in contaminated aquifers. 展开更多
关键词 POLLUTION Detection AQUIFER CONTAMINATION GROUNDWATER Source IDENTIFICATION MONITORING Network Design
下载PDF
Novel integration of extreme learning machine and improved Harris hawks optimization with particle swarm optimization-based mutation for predicting soil consolidation parameter 被引量:2
20
作者 Abidhan Bardhan Navid Kardani +3 位作者 Abdel Kareem Alzo'ubi Bishwajit Roy Pijush Samui Amir HGandomi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1588-1608,共21页
The study proposes an improved Harris hawks optimization(IHHO) algorithm by integrating the standard Harris hawks optimization(HHO) algorithm and mutation-based search mechanism for developing a high-performance machi... The study proposes an improved Harris hawks optimization(IHHO) algorithm by integrating the standard Harris hawks optimization(HHO) algorithm and mutation-based search mechanism for developing a high-performance machine learning solution for predicting soil compression index. HHO is a newly introduced meta-heuristic optimization algorithm(MOA) used to solve continuous search problems.Compared to the original HHO, the proposed IHHO can evade trapping in local optima, which in turn raises the search capabilities and enhances the search mechanism relying on mutation. Subsequently, a novel meta-heuristic-based soft computing technique called ELM-IHHO was established by integrating IHHO and extreme learning machine(ELM) to estimate soil compression index. A sum of 688 consolidation test data was collected for this purpose from an ongoing dedicated freight corridor railway project. To evaluate the generalization capability of the proposed ELM-IHHO model, a detailed comparison between ELM-IHHO and other well-established MOAs, such as particle swarm optimization,genetic algorithm, and biogeography-based optimization integrated with ELM, was performed. Based on the outcomes, the ELM-IHHO model exhibits superior performance over the other MOAs in predicting soil compression index. 展开更多
关键词 Compression index Artificial intelligence Swarm intelligence Meta-heuristic optimization Dedicated freight corridor
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部