Nowadays,theuse of Avatars that are unique digital depictions has increased by users to access Metaverse—a virtual reality environment—through multiple devices and for various purposes.Therefore,the Avatar and Metav...Nowadays,theuse of Avatars that are unique digital depictions has increased by users to access Metaverse—a virtual reality environment—through multiple devices and for various purposes.Therefore,the Avatar and Metaverse are being developed with a new theory,application,and design,necessitating the association of more personal data and devices of targeted users every day.This Avatar and Metaverse technology explosion raises privacy and security concerns,leading to cyber attacks.MV-Honeypot,or Metaverse-Honeypot,as a commercial off-the-shelf solution that can counter these cyber attack-causing vulnerabilities,should be developed.To fill this gap,we study user’s engagements with Avatars in Metaverse,analyze possible security vulnerabilities,and create a model named Simplified Avatar Relationship Association with Non-linear Gradient(SARANG)that draws the full diagram of infrastructure components and data flow through accessing Metaverse in this paper.We also determine the most significant threat for each component’s cyberattacks that will affect user data and Avatars.As a result,the commercial off-the-shelf(COTS)of the MV-Honeypot must be established.展开更多
Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly...Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.展开更多
In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,...In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.展开更多
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this wor...A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods.展开更多
These days,data is regarded as a valuable asset in the era of the data economy,which demands a trading platform for buying and selling data.However,online data trading poses challenges in terms of security and fairnes...These days,data is regarded as a valuable asset in the era of the data economy,which demands a trading platform for buying and selling data.However,online data trading poses challenges in terms of security and fairness because the seller and the buyer may not fully trust each other.Therefore,in this paper,a blockchain-based secure and fair data trading system is proposed by taking advantage of the smart contract and matchmaking encryption.The proposed system enables bilateral authorization,where data trading between a seller and a buyer is accomplished only if their policies,required by each other,are satisfied simultaneously.This can be achieved by exploiting the security features of the matchmaking encryption.To guarantee non-repudiation and fairness between trading parties,the proposed system leverages a smart contract to ensure that the parties honestly carry out the data trading protocol.However,the smart contract in the proposed system does not include complex cryptographic operations for the efficiency of onchain processes.Instead,these operations are carried out by off-chain parties and their results are used as input for the on-chain procedure.The system also uses an arbitration protocol to resolve disputes based on the trading proof recorded on the blockchain.The performance of the protocol is evaluated in terms of off-chain computation overhead and on-chain gas consumption.The results of the experiments demonstrate that the proposed protocols can enable the implementation of a cost-effective data trading system.展开更多
The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency...The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency with strong computational processing capabilities,the Edge Intelligence System(EIS)idea is now being employed,which takes advantage of Artificial Intelligence(AI)and Edge Computing Technology(ECT).Thus,EIS presents a potential approach to enforcing future Intelligent Transportation Systems(ITS),particularly within a context of a Vehicular Network(VNets).However,the current EIS framework meets some issues and is conceivably vulnerable tomultiple adversarial attacks because the central aggregator server handles the entire systemorchestration.Hence,this paper introduces the concept of distributed edge intelligence,combining the advantages of Federated Learning(FL),Differential Privacy(DP),and blockchain to address the issues raised earlier.By performing decentralized data management and storing transactions in immutable distributed ledger networks,the blockchain-assisted FL method improves user privacy and boosts traffic prediction accuracy.Additionally,DP is utilized in defending the user’s private data from various threats and is given the authority to bolster the confidentiality of data-sharing transactions.Our model has been deployed in two strategies:First,DP-based FL to strengthen user privacy by masking the intermediate data during model uploading.Second,blockchain-based FL to effectively construct secure and decentralized traffic management in vehicular networks.The simulation results demonstrated that our framework yields several benefits for VNets privacy protection by forming a distributed EIS with privacy budget(ε)of 4.03,1.18,and 0.522,achieving model accuracy of 95.8%,93.78%,and 89.31%,respectively.展开更多
Sentiment analysis(AS)is one of the basic research directions in natural language processing(NLP),it is widely adopted for news,product review,and politics.Aspect-based sentiment analysis(ABSA)aims at identifying the ...Sentiment analysis(AS)is one of the basic research directions in natural language processing(NLP),it is widely adopted for news,product review,and politics.Aspect-based sentiment analysis(ABSA)aims at identifying the sentiment polarity of a given target context,previous existing model of sentiment analysis possesses the issue of the insufficient exaction of features which results in low accuracy.Hence this research work develops a deep-semantic and contextual knowledge networks(DSCNet).DSCNet tends to exploit the semantic and contextual knowledge to understand the context and enhance the accuracy based on given aspects.At first temporal relationships are established then deep semantic knowledge and contextual knowledge are introduced.Further,a deep integration layer is introduced to measure the importance of features for efficient extraction of different dimensions.Novelty of DSCNet model lies in introducing the deep contextual.DSCNet is evaluated on three datasets i.e.,Restaurant,Laptop,and Twitter dataset considering different deep learning(DL)metrics like precision,recall,accuracy,and Macro-F1 score.Also,comparative analysis is carried out with different baselinemethods in terms of accuracy andMacro-F1 score.DSCNet achieves 92.59%of accuracy on restaurant dataset,86.99%of accuracy on laptop dataset and 78.76%of accuracy on Twitter dataset.展开更多
Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary dom...Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques.展开更多
Recently,COVID-19 has posed a challenging threat to researchers,scientists,healthcare professionals,and administrations over the globe,from its diagnosis to its treatment.The researchers are making persistent efforts ...Recently,COVID-19 has posed a challenging threat to researchers,scientists,healthcare professionals,and administrations over the globe,from its diagnosis to its treatment.The researchers are making persistent efforts to derive probable solutions formanaging the pandemic in their areas.One of the widespread and effective ways to detect COVID-19 is to utilize radiological images comprising X-rays and computed tomography(CT)scans.At the same time,the recent advances in machine learning(ML)and deep learning(DL)models show promising results in medical imaging.Particularly,the convolutional neural network(CNN)model can be applied to identifying abnormalities on chest radiographs.While the epidemic of COVID-19,much research is led on processing the data compared with DL techniques,particularly CNN.This study develops an improved fruit fly optimization with a deep learning-enabled fusion(IFFO-DLEF)model for COVID-19 detection and classification.The major intention of the IFFO-DLEF model is to investigate the presence or absence of COVID-19.To do so,the presented IFFODLEF model applies image pre-processing at the initial stage.In addition,the ensemble of three DL models such as DenseNet169,EfficientNet,and ResNet50,are used for feature extraction.Moreover,the IFFO algorithm with a multilayer perceptron(MLP)classification model is utilized to identify and classify COVID-19.The parameter optimization of the MLP approach utilizing the IFFO technique helps in accomplishing enhanced classification performance.The experimental result analysis of the IFFO-DLEF model carried out on the CXR image database portrayed the better performance of the presented IFFO-DLEF model over recent approaches.展开更多
One of the fundamental properties of an ad hoc network is its connectivity. Maintaining connectivity in wireless networks is extremely difficult due to dynamic changing topology of MANETs. There are several techniques...One of the fundamental properties of an ad hoc network is its connectivity. Maintaining connectivity in wireless networks is extremely difficult due to dynamic changing topology of MANETs. There are several techniques to understand the connectivity level for a given network topology. In this paper, we examine the existing methods and discuss the issues and challenges that are still insurmountable in order to enhance the connectivity properties of wireless multi hop networks.展开更多
Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or ...Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or in the configuration memory. The aim of our research is to characterize self-test and repair processes in Fault Tolerant(FT) dr-FPGA systems in the presence of environmental faults and explore their interrelationships. We develop a Continuous Time Markov Chain(CTMC) model that captures the high level fail-repair processes on a dr-FPGA with periodic online Built-In Self-Test(BIST) and scrubbing to detect and repair faults with minimum latency. Simulation results reveal that given an average fault interval of 36 s, an optimum self-test interval of 48.3 s drives the system to spend 13% of its time in self-tests, remain in safe working states for 76% of its time and face risky fault-prone states for only 7% of its time. Further, we demonstrate that a well-tuned repair strategy boosts overall system availability, minimizes the occurrence of unsafe states, and accommodates a larger range of fault rates within which the system availability remains stable within 10% of its maximum level.展开更多
This paper describes a data transmission method using a cyclic redundancy check and inaudible frequencies.The proposed method uses inaudible high frequencies from 18 k Hz to 22 k Hz generated via the inner speaker of ...This paper describes a data transmission method using a cyclic redundancy check and inaudible frequencies.The proposed method uses inaudible high frequencies from 18 k Hz to 22 k Hz generated via the inner speaker of smart devices.Using the proposed method,the performance is evaluated by conducting data transmission tests between a smart book and smart phone.The test results confirm that the proposed method can send 32 bits of data in an average of 235 ms,the transmission success rate reaches 99.47%,and the error detection rate of the cyclic redundancy check is0.53%.展开更多
Optimal clustering for the web documents is known to complicated cornbinatorial Optimization problem and it is hard to develop a generally applicable oplimal algorithm. An accelerated simuIated arlneaIing aIgorithm is...Optimal clustering for the web documents is known to complicated cornbinatorial Optimization problem and it is hard to develop a generally applicable oplimal algorithm. An accelerated simuIated arlneaIing aIgorithm is developed for automatic web document classification. The web document classification problem is addressed as the problem of best describing a match between a web query and a hypothesized web object. The normalized term frequency and inverse document frequency coefficient is used as a measure of the match. Test beds are generated on - line during the search by transforming model web sites. As a result, web sites can be clustered optimally in terms of keyword vectofs of corresponding web documents.展开更多
This paper surveys important aspects of Web Intelligence (WI). WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next genera...This paper surveys important aspects of Web Intelligence (WI). WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web - related products, systens, and activities. As a direction for scientific research and devlopment, WI can be extremely beneficial for the field of Artificial Intelligence in Education (AIED). This paper covers these issues only very briefly. It focuses more on other issues in WI, such as intelligent Web services, and semantic web, and proposes how to use them as basis for tackling new and challenging research problems in AIED.展开更多
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)(Project Nos.2022-0-00701,10%,RS-2023-00228996,10%,RS-2022-00165794,10%)the ICTR&DProgram of MSIT/IITP(ProjectNo.2021-0-01816,10%)a National Research Foundation of Korea(NRF)grant funded by the Korean Government(Project No.RS2023-00208460,60%).
文摘Nowadays,theuse of Avatars that are unique digital depictions has increased by users to access Metaverse—a virtual reality environment—through multiple devices and for various purposes.Therefore,the Avatar and Metaverse are being developed with a new theory,application,and design,necessitating the association of more personal data and devices of targeted users every day.This Avatar and Metaverse technology explosion raises privacy and security concerns,leading to cyber attacks.MV-Honeypot,or Metaverse-Honeypot,as a commercial off-the-shelf solution that can counter these cyber attack-causing vulnerabilities,should be developed.To fill this gap,we study user’s engagements with Avatars in Metaverse,analyze possible security vulnerabilities,and create a model named Simplified Avatar Relationship Association with Non-linear Gradient(SARANG)that draws the full diagram of infrastructure components and data flow through accessing Metaverse in this paper.We also determine the most significant threat for each component’s cyberattacks that will affect user data and Avatars.As a result,the commercial off-the-shelf(COTS)of the MV-Honeypot must be established.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A3063257)supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley Support Program(2023-DD-RD-0152)supervised by the Innovation Foundation.
文摘Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley support program(2023-DD-RD-0152)supervised by the Innovation Foundation.It was also partially supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2024-2020-0-01797)supervised by the Institute for Information&Communications Technology Planning&Evaluation(IITP).
文摘In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.
基金partly supported by the Technology Development Program of MSS(No.S3033853)by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A3063257)supported by Electronics and Telecommunications Research Institute(ETRI)grant funded by the Korean Government[22ZR1300,Research on Intelligent Cyber Security and Trust Infra].
文摘These days,data is regarded as a valuable asset in the era of the data economy,which demands a trading platform for buying and selling data.However,online data trading poses challenges in terms of security and fairness because the seller and the buyer may not fully trust each other.Therefore,in this paper,a blockchain-based secure and fair data trading system is proposed by taking advantage of the smart contract and matchmaking encryption.The proposed system enables bilateral authorization,where data trading between a seller and a buyer is accomplished only if their policies,required by each other,are satisfied simultaneously.This can be achieved by exploiting the security features of the matchmaking encryption.To guarantee non-repudiation and fairness between trading parties,the proposed system leverages a smart contract to ensure that the parties honestly carry out the data trading protocol.However,the smart contract in the proposed system does not include complex cryptographic operations for the efficiency of onchain processes.Instead,these operations are carried out by off-chain parties and their results are used as input for the on-chain procedure.The system also uses an arbitration protocol to resolve disputes based on the trading proof recorded on the blockchain.The performance of the protocol is evaluated in terms of off-chain computation overhead and on-chain gas consumption.The results of the experiments demonstrate that the proposed protocols can enable the implementation of a cost-effective data trading system.
基金supported by theRepublic ofKorea’sMSIT(Ministry of Science and ICT)under the ICT Convergence Industry Innovation Technology Development Project(2022-0-00614)supervised by the IITP and partially supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1I1A3046590).
文摘The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency with strong computational processing capabilities,the Edge Intelligence System(EIS)idea is now being employed,which takes advantage of Artificial Intelligence(AI)and Edge Computing Technology(ECT).Thus,EIS presents a potential approach to enforcing future Intelligent Transportation Systems(ITS),particularly within a context of a Vehicular Network(VNets).However,the current EIS framework meets some issues and is conceivably vulnerable tomultiple adversarial attacks because the central aggregator server handles the entire systemorchestration.Hence,this paper introduces the concept of distributed edge intelligence,combining the advantages of Federated Learning(FL),Differential Privacy(DP),and blockchain to address the issues raised earlier.By performing decentralized data management and storing transactions in immutable distributed ledger networks,the blockchain-assisted FL method improves user privacy and boosts traffic prediction accuracy.Additionally,DP is utilized in defending the user’s private data from various threats and is given the authority to bolster the confidentiality of data-sharing transactions.Our model has been deployed in two strategies:First,DP-based FL to strengthen user privacy by masking the intermediate data during model uploading.Second,blockchain-based FL to effectively construct secure and decentralized traffic management in vehicular networks.The simulation results demonstrated that our framework yields several benefits for VNets privacy protection by forming a distributed EIS with privacy budget(ε)of 4.03,1.18,and 0.522,achieving model accuracy of 95.8%,93.78%,and 89.31%,respectively.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2022R1A2C2012243).
文摘Sentiment analysis(AS)is one of the basic research directions in natural language processing(NLP),it is widely adopted for news,product review,and politics.Aspect-based sentiment analysis(ABSA)aims at identifying the sentiment polarity of a given target context,previous existing model of sentiment analysis possesses the issue of the insufficient exaction of features which results in low accuracy.Hence this research work develops a deep-semantic and contextual knowledge networks(DSCNet).DSCNet tends to exploit the semantic and contextual knowledge to understand the context and enhance the accuracy based on given aspects.At first temporal relationships are established then deep semantic knowledge and contextual knowledge are introduced.Further,a deep integration layer is introduced to measure the importance of features for efficient extraction of different dimensions.Novelty of DSCNet model lies in introducing the deep contextual.DSCNet is evaluated on three datasets i.e.,Restaurant,Laptop,and Twitter dataset considering different deep learning(DL)metrics like precision,recall,accuracy,and Macro-F1 score.Also,comparative analysis is carried out with different baselinemethods in terms of accuracy andMacro-F1 score.DSCNet achieves 92.59%of accuracy on restaurant dataset,86.99%of accuracy on laptop dataset and 78.76%of accuracy on Twitter dataset.
基金This research was partly supported by the Technology Development Program of MSS[No.S3033853]by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques.
基金This research was partly supported by the Technology Development Program of MSS[No.S3033853]by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A3069700).
文摘Recently,COVID-19 has posed a challenging threat to researchers,scientists,healthcare professionals,and administrations over the globe,from its diagnosis to its treatment.The researchers are making persistent efforts to derive probable solutions formanaging the pandemic in their areas.One of the widespread and effective ways to detect COVID-19 is to utilize radiological images comprising X-rays and computed tomography(CT)scans.At the same time,the recent advances in machine learning(ML)and deep learning(DL)models show promising results in medical imaging.Particularly,the convolutional neural network(CNN)model can be applied to identifying abnormalities on chest radiographs.While the epidemic of COVID-19,much research is led on processing the data compared with DL techniques,particularly CNN.This study develops an improved fruit fly optimization with a deep learning-enabled fusion(IFFO-DLEF)model for COVID-19 detection and classification.The major intention of the IFFO-DLEF model is to investigate the presence or absence of COVID-19.To do so,the presented IFFODLEF model applies image pre-processing at the initial stage.In addition,the ensemble of three DL models such as DenseNet169,EfficientNet,and ResNet50,are used for feature extraction.Moreover,the IFFO algorithm with a multilayer perceptron(MLP)classification model is utilized to identify and classify COVID-19.The parameter optimization of the MLP approach utilizing the IFFO technique helps in accomplishing enhanced classification performance.The experimental result analysis of the IFFO-DLEF model carried out on the CXR image database portrayed the better performance of the presented IFFO-DLEF model over recent approaches.
文摘One of the fundamental properties of an ad hoc network is its connectivity. Maintaining connectivity in wireless networks is extremely difficult due to dynamic changing topology of MANETs. There are several techniques to understand the connectivity level for a given network topology. In this paper, we examine the existing methods and discuss the issues and challenges that are still insurmountable in order to enhance the connectivity properties of wireless multi hop networks.
文摘Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or in the configuration memory. The aim of our research is to characterize self-test and repair processes in Fault Tolerant(FT) dr-FPGA systems in the presence of environmental faults and explore their interrelationships. We develop a Continuous Time Markov Chain(CTMC) model that captures the high level fail-repair processes on a dr-FPGA with periodic online Built-In Self-Test(BIST) and scrubbing to detect and repair faults with minimum latency. Simulation results reveal that given an average fault interval of 36 s, an optimum self-test interval of 48.3 s drives the system to spend 13% of its time in self-tests, remain in safe working states for 76% of its time and face risky fault-prone states for only 7% of its time. Further, we demonstrate that a well-tuned repair strategy boosts overall system availability, minimizes the occurrence of unsafe states, and accommodates a larger range of fault rates within which the system availability remains stable within 10% of its maximum level.
基金supported by Ministry of Educationunder Basic Science Research Program under Grant No.NRF-2013R1A1A2061478
文摘This paper describes a data transmission method using a cyclic redundancy check and inaudible frequencies.The proposed method uses inaudible high frequencies from 18 k Hz to 22 k Hz generated via the inner speaker of smart devices.Using the proposed method,the performance is evaluated by conducting data transmission tests between a smart book and smart phone.The test results confirm that the proposed method can send 32 bits of data in an average of 235 ms,the transmission success rate reaches 99.47%,and the error detection rate of the cyclic redundancy check is0.53%.
文摘Optimal clustering for the web documents is known to complicated cornbinatorial Optimization problem and it is hard to develop a generally applicable oplimal algorithm. An accelerated simuIated arlneaIing aIgorithm is developed for automatic web document classification. The web document classification problem is addressed as the problem of best describing a match between a web query and a hypothesized web object. The normalized term frequency and inverse document frequency coefficient is used as a measure of the match. Test beds are generated on - line during the search by transforming model web sites. As a result, web sites can be clustered optimally in terms of keyword vectofs of corresponding web documents.
文摘This paper surveys important aspects of Web Intelligence (WI). WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web - related products, systens, and activities. As a direction for scientific research and devlopment, WI can be extremely beneficial for the field of Artificial Intelligence in Education (AIED). This paper covers these issues only very briefly. It focuses more on other issues in WI, such as intelligent Web services, and semantic web, and proposes how to use them as basis for tackling new and challenging research problems in AIED.