Downward transport of stratospheric air into the troposphere(identified as stratospheric intrusions)could potentially modify the radiation budget and chemical of the Earth's surface atmosphere.As the highest and l...Downward transport of stratospheric air into the troposphere(identified as stratospheric intrusions)could potentially modify the radiation budget and chemical of the Earth's surface atmosphere.As the highest and largest plateau on earth,the Tibetan Plateau including the Himalayas couples to global climate,and has attracted widespread attention due to rapid warming and cryospheric shrinking.Previous studies recognized strong stratospheric intrusions in the Himalayas but are poorly understood due to limited direct evidences and the complexity of the meteorological dynamics of the third pole.Cosmogenic^(35)S is a radioactive isotope predominately produced in the lower stratosphere and has been demonstrated as a sensitive chemical tracer to detect stratospherically sourced air mass in the planetary boundary layer.Here,we report 6-month(April–September 2018)observation of^(35)S in atmospheric sulfate aerosols(^(35)SO_(4)^(2-))collected from a remote site in the Himalayas to reveal the stratospheric intrusion phenomenon as well as its potential impacts in this region.Throughout the sampling campaign,the^(35)SO_(4)^(2-)concentrations show an average of 1,070±980 atoms/m^(3).In springtime,the average is 1,620±730 atoms/m^(3),significantly higher than the global existing data measured so far.The significant enrichments of^(35)SO_(4)^(2-)measured in this study verified the hypothesis that the Himalayas is a global hot spot of stratospheric intrusions,especially during the springtime as a consequence of its unique geology and atmospheric couplings.In combined with the ancillary evidences,e.g.,oxygen-17 anomaly in sulfate and modeling results,we found that the stratospheric intrusions have a profound impact on the surface ozone concentrations over the study region,and potentially have the ability to constrain how the mechanisms of sulfate oxidation are affected by a change in plateau atmospheric properties and conditions.This study provides new observational constraints on stratospheric intrusions in the Himalayas,which would further provide additional information for a deeper understanding on the environment and climatic changes over the Tibetan Plateau.展开更多
Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cr...Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures.展开更多
One of the primary goals of the space exploration community is to unambiguously detect past or present life outside of Earth.As such,a number of so-called life detection technologies,instruments,and approaches have be...One of the primary goals of the space exploration community is to unambiguously detect past or present life outside of Earth.As such,a number of so-called life detection technologies,instruments,and approaches have been applied as part of past,current,and future space missions.As astrobiology is a truly interdisciplinary field within the realm of space exploration with major contributions from physical and biological sciences(among others),recently there has been development of a number of relevant techniques from scientific fields that have yet to be fully applied to extraterrestrial life detection.As a culmination of the 2021 Blue Marble Space Institute of Science(BMSIS)Young Scientist Program(YSP),we present a number of techniques drawn from various fields(including,but not limited to,chemistry,materials science,biology,nanotechnology,medical science,astrophysics,and more)that either have been or have the potential to be applied to life detection research.These techniques broadly fall under three categories:instrumentation for in situ measurements of biosignatures within the solar system,calculations or observational techniques for remote measurements of exoplanet biosignatures,and technosignatures.We hope that this primer serves to inspire the field to consider applying more potential technologies from adjacent fields into any of these three categories of life detection.展开更多
When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the midd...When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the middle Hadean(4.37-4.20 Ga). The trigger of the initiation of plate tectonics is the ABEL Bombardment, which delivered oceanic and atmospheric components on a completely dry reductive Earth, originally comprised of enstatite chondrite-like materials. Through the accretion of volatiles, shock metamorphism processed with vaporization of both CI chondrite and supracrustal rocks at the bombarded location, and significant recrystallization went through under wet conditions, caused considerable eclogitization in the primordial continents composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull force to initiate plate tectonics in the middle Hadean. Another important factor is the size of the bombardment. By creating Pacific Ocean class crater by 1000 km across impactor, rigid plate operating stagnant lid tectonics since the early Hadean was severely destroyed, and oceanic lithosphere was generated to have bi-modal lithosphere on the Earth to enable the operation of plate tectonics.Considering the importance of the ABEL Bombardment event which initiated plate tectonics including the appearance of ocean and atmosphere, we propose that the Hadean Eon can be subdivided into three periods:(1) early Hadean(4.57-4.37 Ga),(2) middle Hadean(4.37-4.20 Ga), and(3) late Hadean(4.20-4.00 Ga).展开更多
U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previousl...U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity.展开更多
The paper discusses generation of volatile-bearing plumes in the mantle transition zone(MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic serie...The paper discusses generation of volatile-bearing plumes in the mantle transition zone(MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia.The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle.Most probable sources of volatiles are the hyclrated/carbonated sediments and basalts and serpentinite of oceanic slabs,which can be subducted down to the deep mantle.Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle,which can serve source of heat in the MTZ.The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling,to produce OIB-type mafic and felsic melts,respectively.展开更多
How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or em...How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or emergence of a specific chemical function of proto-biological systems. It remains unclear what geochemical situations could drive all the stages of chemical evolution, ranging from condensation of simple inorganic compounds to the emergence of self-sustaining systems that were evolvable into modern biological ones. In this review, we summarize reported experimental and theoretical findings for prebiotic chemistry relevant to this topic, including availability of biologically essential elements(N and P) on the Hadean Earth, abiotic synthesis of life's building blocks(amino acids, peptides, ribose, nucleobases, fatty acids, nucleotides, and oligonucleotides), their polymerizations to bio-macromolecules(peptides and oligonucleotides), and emergence of biological functions of replication and compartmentalization. It is indicated from the overviews that completion of the chemical evolution requires at least eight reaction conditions of(1) reductive gas phase,(2) alkaline pH,(3) freezing temperature,(4)fresh water,(5) dry/dry-wet cycle,(6) coupling with high energy reactions,(7) heating-cooling cycle in water, and(8) extraterrestrial input of life's building blocks and reactive nutrients. The necessity of these mutually exclusive conditions clearly indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intratransportation of reaction products and reactants through fluid circulation. Future experimental research that mimics the conditions of the proposed model are expected to provide further constraints on the processes and mechanisms for the origin of life.展开更多
The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant...The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge.展开更多
The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at...The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.展开更多
An overview of the recently renovated high-pressure X-ray diffraction(XRD)BL10XU beamline for the diamond anvil cell at SPring-8 is presented.The renovation includes the replacement of the X-ray source and monochromat...An overview of the recently renovated high-pressure X-ray diffraction(XRD)BL10XU beamline for the diamond anvil cell at SPring-8 is presented.The renovation includes the replacement of the X-ray source and monochromator,enhanced focusing systems for high-energy XRD,and recent progress in the sample environment control techniques that are available for high-pressure studies.Other simultaneous measurement techniques for combination with XRD,such as Raman scattering spectroscopy and Mossbauer spectroscopy,have been developed to obtain complementary information under extreme conditions.These advanced techniques are expected to make significant contributions to in-depth understanding of various and complicated high-pressure phenomena.The experience gained with the BL10XU beamline could help promote high-pressure research in future synchrotron radiation facilities.展开更多
Geological observations indicate that there are only a few rocks of Archean Earth and no Hadean rocks on the surface of the present-day Earth.From these facts,many scientists believe that the primordial continents nev...Geological observations indicate that there are only a few rocks of Archean Earth and no Hadean rocks on the surface of the present-day Earth.From these facts,many scientists believe that the primordial continents never existed during Hadean Earth,and the continental volume has kept increasing.On the other hand,recent studies reported the importance of the primordial continents on the origin of life,implying their existence.In this paper,we discussed the possible process that could explain the loss of the primordial continents with the assumption that they existed in the Hadean.Although depending on the timing of the initiation of plate tectonics and its convection style,subduction erosion,which is observed on the present-day Earth,might have carried the primordial continents into the deep mantle.展开更多
Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellu...Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellular systems used in early life. The essential genes and the minimal gene set required to support bacterial life have recently been experimentally and computationally identified. It is, however,still hard to estimate the ancient genes present in primitive cells compared to the essential genes in contemporary bacteria, because we do not know how ancestral primitive cells lived and proliferated, and therefore cannot directly evaluate the essentiality of the genes in ancestral primitive cells. The cell wall is normally essential for bacterial proliferation and cellular division of walled bacterial cells is normally highly controlled by the essential FtsZ cell division machinery. But, bacteria are capable of reverting to their cell wall deficient ancestral form, called the "L-form". Unlike "normal" cells, L-forms divide by a simple physical mechanism based on the effects of membrane dynamics, suggesting a mode of primitive proliferation before the appearance of the cell wall. In this review, we summarize the experimental and computational investigations of minimal gene sets and discuss the minimal cellular modules required to support the proliferation of primitive cells, based on L-form proliferation.展开更多
The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's s...The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface,suggesting the Hadean crust was lost due to some processes.We investigated the subduction of one of the possible candidates for the primordial crust,anorthosite and KREEP crust similar to the Moon,which is also considered to have formed from the crystallization of the magma ocean.Similar to the present Earth,the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface.In this study,the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations.The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion.We have found that primordial anorthosite and KREEP crust of up to - 50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.展开更多
We propose the nuclear geyser model to elucidate an optimal site to bear the first life.Our model overcomes the difficulties that previously proposed models have encountered.Nuclear geyser is a geyser driven by a natu...We propose the nuclear geyser model to elucidate an optimal site to bear the first life.Our model overcomes the difficulties that previously proposed models have encountered.Nuclear geyser is a geyser driven by a natural nuclear reactor,which was likely common in the Hadean Earth,because of a much higher abundance of 235U as nuclear fuel.The nuclear geyser supplies the following:(1)high-density ionizing radiation to promote chemical chain reactions that even tar can be used for intermediate material to restart chemical reactions,(2)a system to maintain the circulation of material and energy,which includes cyclic environmental conditions(warm/cool,dry/wet,etc.)to enable to produce complex organic compounds,(3)a lower temperature than 100℃ as not to break down macromolecular organic compounds,(4)a locally reductive environment depending on rock types exposed along the geyser wall,and(5)a container to confine and accumulate volatile chemicals.These five factors are the necessary conditions that the birth place of life must satisfy.Only the nuclear geyser can meet all five,in contrast to the previously proposed birth sites,such as tidal flat,submarine hydrothermal vent,and outer space.The nuclear reactor and associated geyser,which maintain the circulations of material and energy with its surrounding environment,are regarded as the nuclear geyser system that enables numerous kinds of chemical reactions to synthesize complex organic compounds,and where the most primitive metabolism could be generated.展开更多
The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification ...The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite.We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca.21 km depth boundary,underlain by meta-anorthosite(grossular + kyanite 4 quartz)down to 50-60 km in depth.The thickness of the mafic KREEP basalt in the lower crust,separating it from the underlying upper mantle is not well-constrained and might have been up to ca.100-200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density.The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca,Mg,Fe,Mn,P,K,and Cl which were exposed on the surface of the dry Earth.Around 190 million years after the solidification of the magma ocean, "ABEL bombardment" delivered volatiles including H_2O,CO_2,N_2 as well as silicate components through the addition of icy asteroids.This event continued for 200 Myr with subordinate bombardments until 3.9 Ga,preparing the Earth for the prebiotic chemical evolution and as the cradle of first life.Due to vigorous convection arising from high mantle potential temperatures,the primordial continents disintegrated and were dragged down to the deep mantle,marking the onset of Hadean plate tectonics.展开更多
Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a t...Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 〉95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 〉 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terrestrial magma ocean was saturated with H_2O,plagioclase could not crystallize,and anorthosite could not form.展开更多
The history of the early Earth is shrouded in mystery, and one of the major outcomes of the Apollo Program, lunar sampling, and the data acquired by subsequent orbiting missions, is that the Moon is an important analo...The history of the early Earth is shrouded in mystery, and one of the major outcomes of the Apollo Program, lunar sampling, and the data acquired by subsequent orbiting missions, is that the Moon is an important analogue for the Hadean Earth, which includes primordial planet-forming materials. We assemble two special issues of "Geoscience Frontiers" with state-of-the-art contributions that provide insights into planetary formation, Earth's early history and primordial life. New theories show why the Earth began as a dry planetary system and was later seeded by an ocean-atmosphere system through the bombardment of carbonaceous chondrites. A combination of the information concerning the evolution of Earth, Mars, and the other terrestrial planets is important in understanding the fate of the primordial continental crustal materials and the making of habitable planets.展开更多
To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth,we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 C and 500 bars....To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth,we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 C and 500 bars.During the experiments,the total carbonic acid concentration(∑XO2) in the fluid decreased from approximately 65 to 9 mmol/kg.Carbonate minerals,magnesite,and subordinate amount of dolomite were formed via the water-rock interaction.The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h,which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature.As seen in previous hydrothermal experiments using komatiite,ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration.Considering carbonate mineralogy over the temperature range of natural hydrothermal fields,H2 generation is likely suppressed at temperatures below approximately 300℃ due to the formation of the Mg-bearing carbonates.Nevertheless,H_2 concentration in fluid at 300℃ could be still high due to the temperature dependency of magnetite stability in ultramafic systems.Moreover,the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth.Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle.This process may have reduced the huge initial amount of CO2 on the surface of the early Earth.Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle,even in hot subduction zones.展开更多
A colony of macro-fossils Akouemma hemisphaeria has been described in the Paleoproterozoic sedimentary basin of Okondja, Gabon. These fossils are classified into two groups according to their spheroidal or elongated f...A colony of macro-fossils Akouemma hemisphaeria has been described in the Paleoproterozoic sedimentary basin of Okondja, Gabon. These fossils are classified into two groups according to their spheroidal or elongated forms. The spheroidal shapes are similar, have a tripartite structure with two hemispheres and a median disc and gradually pass to the elongated forms. These elongated forms have a pronounced bipartite tendency to two “hemispheres” separated by a median surface, and often have several ovoid “pieces” attached. The elongated specimens show both lateral growth marks and signs of fission. Growth marks are characterized by unidirectional homogeneous side elongations and lateral bud-like protuberances. The signs of fission are marked by circular furrows perpendicular to the direction of elongation, called “constriction furrows” with varying depths depending on the degree of fission of the specimen and internal vertical “division planes”. All of these ovoid and elongated specimens have undergone significant initial deformations due mainly to mutual lateral compressions in tabular beds. The Akouemma hemisphaeria macro-organisms, which were primitive probably sessile organisms, lived on the seafloor. They provide the oldest known record of macro-organisms on Earth having vegetative growth and asexual reproduction by budding, lateral elongation and fission. Their mutual lateral deformations would result from their growth.展开更多
The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.Thi...The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.This study reports new zircon data obtained from Chaillu massif and N'goutou complex,which constrain the protolith age of the basement orthogneisses and the igneous age of an intrusive granite,respectively.Most zircons from the orthogneisses are blue and exhibit oscillatory zoning in cathode-luminescence images.Zircons with lower common lead abundances tend to be distributed close to the concordia curve.Two age clusters around 2860 Ma and 2910 Ma are found in zircons plotted on the concordia curve.Based on the Th/U ratios of zircons,these ages correspond to the protolith ages of the orthogneisses,and the zircons are not metamorphic in origin.Syenites and granites were collected from the N'goutou complex that intrudes into the FA and FB units of the Francevillian Group.The granitoids exhibit chemical composition of A-type granite affinity.Half of zircons separated from the granite are non-luminous,and the remaining half exhibit obscure internal textures under cathode-luminescence observation.All zircon grains contain significant amounts of common lead;the lead isotopic variability is probably attributed to the mixing of two components in the zircons.The zircon radiogenic ^(207)Pb/^(206)Pb ratio is 0.13707 ± 0.0010.corresponding to a ^(207)Pb/^(206)Pb age of 2191 ± 13 Ma.This constrains the minimum depositional age of the FA and FB units.Furthermore,the FB unit consists of manganese-rich carbonate rocks and organic carbon-rich black shales with macroscopic fossils.Based on our age constraints,these organisms appeared in the study area just after the last Paleoproterozoic Snowball Earth event,in concert with global scale oxidation event encompassing the Snowball Earth.展开更多
基金financially supported by the second Tibetan Plateau Scientific Expedition and Research Program (STEP) (No.2019QZKK0605)the National Natural Science Foundation of China (42371151)+3 种基金the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2023)the research grant of State Key Laboratory of Isotope Geochemistry (SKLaBIG-KF-22-05)the Natural Science Foundation of Gansu Province (23JRRA648)China Postdoctoral Science Foundation (2022M723358)。
文摘Downward transport of stratospheric air into the troposphere(identified as stratospheric intrusions)could potentially modify the radiation budget and chemical of the Earth's surface atmosphere.As the highest and largest plateau on earth,the Tibetan Plateau including the Himalayas couples to global climate,and has attracted widespread attention due to rapid warming and cryospheric shrinking.Previous studies recognized strong stratospheric intrusions in the Himalayas but are poorly understood due to limited direct evidences and the complexity of the meteorological dynamics of the third pole.Cosmogenic^(35)S is a radioactive isotope predominately produced in the lower stratosphere and has been demonstrated as a sensitive chemical tracer to detect stratospherically sourced air mass in the planetary boundary layer.Here,we report 6-month(April–September 2018)observation of^(35)S in atmospheric sulfate aerosols(^(35)SO_(4)^(2-))collected from a remote site in the Himalayas to reveal the stratospheric intrusion phenomenon as well as its potential impacts in this region.Throughout the sampling campaign,the^(35)SO_(4)^(2-)concentrations show an average of 1,070±980 atoms/m^(3).In springtime,the average is 1,620±730 atoms/m^(3),significantly higher than the global existing data measured so far.The significant enrichments of^(35)SO_(4)^(2-)measured in this study verified the hypothesis that the Himalayas is a global hot spot of stratospheric intrusions,especially during the springtime as a consequence of its unique geology and atmospheric couplings.In combined with the ancillary evidences,e.g.,oxygen-17 anomaly in sulfate and modeling results,we found that the stratospheric intrusions have a profound impact on the surface ozone concentrations over the study region,and potentially have the ability to constrain how the mechanisms of sulfate oxidation are affected by a change in plateau atmospheric properties and conditions.This study provides new observational constraints on stratospheric intrusions in the Himalayas,which would further provide additional information for a deeper understanding on the environment and climatic changes over the Tibetan Plateau.
文摘Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures.
基金the primary outcome of a summer research intern-ship with the Blue Marble Space Institute of Science(BMSIS)2021 Young Scientist Program(YSP)G.E.L.is partially funded through the NASA Shared Services Center grant“An Integrated Approach Towards Understanding Planetary Environments For The Origin And Detectability Of Life”(grant number 80NSSC18M0064)。
文摘One of the primary goals of the space exploration community is to unambiguously detect past or present life outside of Earth.As such,a number of so-called life detection technologies,instruments,and approaches have been applied as part of past,current,and future space missions.As astrobiology is a truly interdisciplinary field within the realm of space exploration with major contributions from physical and biological sciences(among others),recently there has been development of a number of relevant techniques from scientific fields that have yet to be fully applied to extraterrestrial life detection.As a culmination of the 2021 Blue Marble Space Institute of Science(BMSIS)Young Scientist Program(YSP),we present a number of techniques drawn from various fields(including,but not limited to,chemistry,materials science,biology,nanotechnology,medical science,astrophysics,and more)that either have been or have the potential to be applied to life detection research.These techniques broadly fall under three categories:instrumentation for in situ measurements of biosignatures within the solar system,calculations or observational techniques for remote measurements of exoplanet biosignatures,and technosignatures.We hope that this primer serves to inspire the field to consider applying more potential technologies from adjacent fields into any of these three categories of life detection.
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas Grant Number 26106002
文摘When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the middle Hadean(4.37-4.20 Ga). The trigger of the initiation of plate tectonics is the ABEL Bombardment, which delivered oceanic and atmospheric components on a completely dry reductive Earth, originally comprised of enstatite chondrite-like materials. Through the accretion of volatiles, shock metamorphism processed with vaporization of both CI chondrite and supracrustal rocks at the bombarded location, and significant recrystallization went through under wet conditions, caused considerable eclogitization in the primordial continents composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull force to initiate plate tectonics in the middle Hadean. Another important factor is the size of the bombardment. By creating Pacific Ocean class crater by 1000 km across impactor, rigid plate operating stagnant lid tectonics since the early Hadean was severely destroyed, and oceanic lithosphere was generated to have bi-modal lithosphere on the Earth to enable the operation of plate tectonics.Considering the importance of the ABEL Bombardment event which initiated plate tectonics including the appearance of ocean and atmosphere, we propose that the Hadean Eon can be subdivided into three periods:(1) early Hadean(4.57-4.37 Ga),(2) middle Hadean(4.37-4.20 Ga), and(3) late Hadean(4.20-4.00 Ga).
基金supported by Japan Society of Promotion of Science (JSPS KAKENHI Grants-in-Aid for Scientific Research Grant Nos. 23224012, 26106002, and 26106005) from the Japanese Ministry of Education, Science, Sports, Technology, and Culture
文摘U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity.
基金supported by the Ministry of Education and Science of the Russian Federation(project No.14.B25.31.0032)Scientific Project of the Institute of Geology and Mineralogy SB RAS,Grant-in-Aid for Scientific Research No.23224012Global COE program"From the Earth to"Earths"(SM),and JSPS Grant-in-Aid No.14526(IS)
文摘The paper discusses generation of volatile-bearing plumes in the mantle transition zone(MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia.The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle.Most probable sources of volatiles are the hyclrated/carbonated sediments and basalts and serpentinite of oceanic slabs,which can be subducted down to the deep mantle.Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle,which can serve source of heat in the MTZ.The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling,to produce OIB-type mafic and felsic melts,respectively.
基金partly supported by JSPS KAKENHI Grant Nos. 26800276 (Grant-in-Aid for Young Scientists (B)), 16H04074 (Grant-in-Aid for Scientific Research (B)), 16K13906 (Grant-in-Aid for Challenging Exploratory Research), and 26106001 (Grant-in-Aid for Scientific Research on Innovative Areas)
文摘How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or emergence of a specific chemical function of proto-biological systems. It remains unclear what geochemical situations could drive all the stages of chemical evolution, ranging from condensation of simple inorganic compounds to the emergence of self-sustaining systems that were evolvable into modern biological ones. In this review, we summarize reported experimental and theoretical findings for prebiotic chemistry relevant to this topic, including availability of biologically essential elements(N and P) on the Hadean Earth, abiotic synthesis of life's building blocks(amino acids, peptides, ribose, nucleobases, fatty acids, nucleotides, and oligonucleotides), their polymerizations to bio-macromolecules(peptides and oligonucleotides), and emergence of biological functions of replication and compartmentalization. It is indicated from the overviews that completion of the chemical evolution requires at least eight reaction conditions of(1) reductive gas phase,(2) alkaline pH,(3) freezing temperature,(4)fresh water,(5) dry/dry-wet cycle,(6) coupling with high energy reactions,(7) heating-cooling cycle in water, and(8) extraterrestrial input of life's building blocks and reactive nutrients. The necessity of these mutually exclusive conditions clearly indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intratransportation of reaction products and reactants through fluid circulation. Future experimental research that mimics the conditions of the proposed model are expected to provide further constraints on the processes and mechanisms for the origin of life.
基金supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research on Innovative Areas), Grant Number 26106002(Hadean Bio Science)the Tokyo Dome Corporation for support of the TeNQ exhibitthe branch of Space Exploration Education & Discovery, the University Museum
文摘The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge.
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas(Grant Nos.26106002 and 26106006)
文摘The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.
基金This work was partially supported by RIKEN,Japan,and MEXT/JSPS KAKENHI GrantsNos.JP24000005 and JP16H06285(to K.H.),JP26000006(to K.S.),and JP22000002 and JP15H05748(to E.O.).This work was performed under SPring-8 proposals.43 Comments from anonymous reviewers were helpful in improving the manuscript.
文摘An overview of the recently renovated high-pressure X-ray diffraction(XRD)BL10XU beamline for the diamond anvil cell at SPring-8 is presented.The renovation includes the replacement of the X-ray source and monochromator,enhanced focusing systems for high-energy XRD,and recent progress in the sample environment control techniques that are available for high-pressure studies.Other simultaneous measurement techniques for combination with XRD,such as Raman scattering spectroscopy and Mossbauer spectroscopy,have been developed to obtain complementary information under extreme conditions.These advanced techniques are expected to make significant contributions to in-depth understanding of various and complicated high-pressure phenomena.The experience gained with the BL10XU beamline could help promote high-pressure research in future synchrotron radiation facilities.
基金supported by JSPS KAKENHI(Grand-in-Aid for Scientific Research(S)) Grant No.23224012(Growth of the second continent and mantle)
文摘Geological observations indicate that there are only a few rocks of Archean Earth and no Hadean rocks on the surface of the present-day Earth.From these facts,many scientists believe that the primordial continents never existed during Hadean Earth,and the continental volume has kept increasing.On the other hand,recent studies reported the importance of the primordial continents on the origin of life,implying their existence.In this paper,we discussed the possible process that could explain the loss of the primordial continents with the assumption that they existed in the Hadean.Although depending on the timing of the initiation of plate tectonics and its convection style,subduction erosion,which is observed on the present-day Earth,might have carried the primordial continents into the deep mantle.
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas(26106001)
文摘Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellular systems used in early life. The essential genes and the minimal gene set required to support bacterial life have recently been experimentally and computationally identified. It is, however,still hard to estimate the ancient genes present in primitive cells compared to the essential genes in contemporary bacteria, because we do not know how ancestral primitive cells lived and proliferated, and therefore cannot directly evaluate the essentiality of the genes in ancestral primitive cells. The cell wall is normally essential for bacterial proliferation and cellular division of walled bacterial cells is normally highly controlled by the essential FtsZ cell division machinery. But, bacteria are capable of reverting to their cell wall deficient ancestral form, called the "L-form". Unlike "normal" cells, L-forms divide by a simple physical mechanism based on the effects of membrane dynamics, suggesting a mode of primitive proliferation before the appearance of the cell wall. In this review, we summarize the experimental and computational investigations of minimal gene sets and discuss the minimal cellular modules required to support the proliferation of primitive cells, based on L-form proliferation.
基金supported partly by KAKENHI 26800237 and 26287105
文摘The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface,suggesting the Hadean crust was lost due to some processes.We investigated the subduction of one of the possible candidates for the primordial crust,anorthosite and KREEP crust similar to the Moon,which is also considered to have formed from the crystallization of the magma ocean.Similar to the present Earth,the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface.In this study,the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations.The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion.We have found that primordial anorthosite and KREEP crust of up to - 50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas(Grant Nos. 26106002 and 26106006)
文摘We propose the nuclear geyser model to elucidate an optimal site to bear the first life.Our model overcomes the difficulties that previously proposed models have encountered.Nuclear geyser is a geyser driven by a natural nuclear reactor,which was likely common in the Hadean Earth,because of a much higher abundance of 235U as nuclear fuel.The nuclear geyser supplies the following:(1)high-density ionizing radiation to promote chemical chain reactions that even tar can be used for intermediate material to restart chemical reactions,(2)a system to maintain the circulation of material and energy,which includes cyclic environmental conditions(warm/cool,dry/wet,etc.)to enable to produce complex organic compounds,(3)a lower temperature than 100℃ as not to break down macromolecular organic compounds,(4)a locally reductive environment depending on rock types exposed along the geyser wall,and(5)a container to confine and accumulate volatile chemicals.These five factors are the necessary conditions that the birth place of life must satisfy.Only the nuclear geyser can meet all five,in contrast to the previously proposed birth sites,such as tidal flat,submarine hydrothermal vent,and outer space.The nuclear reactor and associated geyser,which maintain the circulations of material and energy with its surrounding environment,are regarded as the nuclear geyser system that enables numerous kinds of chemical reactions to synthesize complex organic compounds,and where the most primitive metabolism could be generated.
基金supported by Foreign Expert Funding from China University of Geosciences Beijing
文摘The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite.We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca.21 km depth boundary,underlain by meta-anorthosite(grossular + kyanite 4 quartz)down to 50-60 km in depth.The thickness of the mafic KREEP basalt in the lower crust,separating it from the underlying upper mantle is not well-constrained and might have been up to ca.100-200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density.The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca,Mg,Fe,Mn,P,K,and Cl which were exposed on the surface of the dry Earth.Around 190 million years after the solidification of the magma ocean, "ABEL bombardment" delivered volatiles including H_2O,CO_2,N_2 as well as silicate components through the addition of icy asteroids.This event continued for 200 Myr with subordinate bombardments until 3.9 Ga,preparing the Earth for the prebiotic chemical evolution and as the cradle of first life.Due to vigorous convection arising from high mantle potential temperatures,the primordial continents disintegrated and were dragged down to the deep mantle,marking the onset of Hadean plate tectonics.
基金supported by a grant from the Ministry of Education,Culture,Sports,Science,and Technology of Japan,Grant-in-Aid for Scientific Research on Innovative Areas(Grant Number 26106002)
文摘Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 〉95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 〉 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terrestrial magma ocean was saturated with H_2O,plagioclase could not crystallize,and anorthosite could not form.
文摘The history of the early Earth is shrouded in mystery, and one of the major outcomes of the Apollo Program, lunar sampling, and the data acquired by subsequent orbiting missions, is that the Moon is an important analogue for the Hadean Earth, which includes primordial planet-forming materials. We assemble two special issues of "Geoscience Frontiers" with state-of-the-art contributions that provide insights into planetary formation, Earth's early history and primordial life. New theories show why the Earth began as a dry planetary system and was later seeded by an ocean-atmosphere system through the bombardment of carbonaceous chondrites. A combination of the information concerning the evolution of Earth, Mars, and the other terrestrial planets is important in understanding the fate of the primordial continental crustal materials and the making of habitable planets.
基金supported by a grant for"Hadean BioScience(No.26106002)"from the Ministry of Education,Culture,Sports,Science and Technology,Japan
文摘To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth,we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 C and 500 bars.During the experiments,the total carbonic acid concentration(∑XO2) in the fluid decreased from approximately 65 to 9 mmol/kg.Carbonate minerals,magnesite,and subordinate amount of dolomite were formed via the water-rock interaction.The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h,which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature.As seen in previous hydrothermal experiments using komatiite,ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration.Considering carbonate mineralogy over the temperature range of natural hydrothermal fields,H2 generation is likely suppressed at temperatures below approximately 300℃ due to the formation of the Mg-bearing carbonates.Nevertheless,H_2 concentration in fluid at 300℃ could be still high due to the temperature dependency of magnetite stability in ultramafic systems.Moreover,the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth.Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle.This process may have reduced the huge initial amount of CO2 on the surface of the early Earth.Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle,even in hot subduction zones.
文摘A colony of macro-fossils Akouemma hemisphaeria has been described in the Paleoproterozoic sedimentary basin of Okondja, Gabon. These fossils are classified into two groups according to their spheroidal or elongated forms. The spheroidal shapes are similar, have a tripartite structure with two hemispheres and a median disc and gradually pass to the elongated forms. These elongated forms have a pronounced bipartite tendency to two “hemispheres” separated by a median surface, and often have several ovoid “pieces” attached. The elongated specimens show both lateral growth marks and signs of fission. Growth marks are characterized by unidirectional homogeneous side elongations and lateral bud-like protuberances. The signs of fission are marked by circular furrows perpendicular to the direction of elongation, called “constriction furrows” with varying depths depending on the degree of fission of the specimen and internal vertical “division planes”. All of these ovoid and elongated specimens have undergone significant initial deformations due mainly to mutual lateral compressions in tabular beds. The Akouemma hemisphaeria macro-organisms, which were primitive probably sessile organisms, lived on the seafloor. They provide the oldest known record of macro-organisms on Earth having vegetative growth and asexual reproduction by budding, lateral elongation and fission. Their mutual lateral deformations would result from their growth.
基金supported by a grant for"Chronostratigraphy for the Mesoproterozoic strata in Jixian,North China(No.26800259)"and"Hadean BioScience(No.26106002)"from the Ministry of Education,Culture,Sports,Science,and Technology,Japan
文摘The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.This study reports new zircon data obtained from Chaillu massif and N'goutou complex,which constrain the protolith age of the basement orthogneisses and the igneous age of an intrusive granite,respectively.Most zircons from the orthogneisses are blue and exhibit oscillatory zoning in cathode-luminescence images.Zircons with lower common lead abundances tend to be distributed close to the concordia curve.Two age clusters around 2860 Ma and 2910 Ma are found in zircons plotted on the concordia curve.Based on the Th/U ratios of zircons,these ages correspond to the protolith ages of the orthogneisses,and the zircons are not metamorphic in origin.Syenites and granites were collected from the N'goutou complex that intrudes into the FA and FB units of the Francevillian Group.The granitoids exhibit chemical composition of A-type granite affinity.Half of zircons separated from the granite are non-luminous,and the remaining half exhibit obscure internal textures under cathode-luminescence observation.All zircon grains contain significant amounts of common lead;the lead isotopic variability is probably attributed to the mixing of two components in the zircons.The zircon radiogenic ^(207)Pb/^(206)Pb ratio is 0.13707 ± 0.0010.corresponding to a ^(207)Pb/^(206)Pb age of 2191 ± 13 Ma.This constrains the minimum depositional age of the FA and FB units.Furthermore,the FB unit consists of manganese-rich carbonate rocks and organic carbon-rich black shales with macroscopic fossils.Based on our age constraints,these organisms appeared in the study area just after the last Paleoproterozoic Snowball Earth event,in concert with global scale oxidation event encompassing the Snowball Earth.