Management of the Pointe-Noire Forest requires high-performance tools for simulating tree and stand growth and assessing the sustainability of plantations. Modelling the dynamics of even-aged and mono-species stands i...Management of the Pointe-Noire Forest requires high-performance tools for simulating tree and stand growth and assessing the sustainability of plantations. Modelling the dynamics of even-aged and mono-species stands is a very active research topic. The approaches adopted by researchers vary according to the objectives and species considered: dendrometrical, Eco physiological or architectural. Thanks to the particular nature of these plantations and the trial set-up, it will be possible to explore the various aspects of production, clearly separating the part linked to genetics (three clones tested) from the part linked to the environment (via fertilisation) and the part associated with competition between trees (via planting densities and thinning regimes). This study will make a major contribution to the applicability of the self-thinning line and the RDI (Reineke Density Index) (Reineke, 1933) to fast-growing plantations. This research work will contribute to two points: 1) product diversification, which is a way of coping with international variations in timber markets, and 2) understanding how ecosystems function in exceptionally poor conditions, which will then enable the environmental impacts of the various recommended silvicultural itineraries to be assessed. The results obtained show that competition between trees in a stand of eucalyptus at very high density (10,000 stems/ha) and in two environments of very contrasting fertility is different depending on the clone. The decision on the date of the first thinning with a view to silviculture for timber and energy wood, which aims to ensure sustained and sustainable production of eucalyptus wood in these soils, should be taken between 12 and 14 months. The competition band is strong between 14 and 17 months, when the RDI = 0.8 is double that observed at 12 months.展开更多
Chronic viral hepatitis B (HBV) remains a major public health problem in Burkina Faso. Since access to diagnostic tests and treatments is limited because of their high cost, the majority of the population turn to trad...Chronic viral hepatitis B (HBV) remains a major public health problem in Burkina Faso. Since access to diagnostic tests and treatments is limited because of their high cost, the majority of the population turn to traditional herbal treatments. This study aimed to evaluate the effectiveness of a plant recipe called Hepatib tiben. It consisted of comparing certain biochemical and molecular parameters of patients infected with HBV that were supported by the recipe. The patients were recruited in Ouagadougou by the traditional health practitioner according to the requirements of the study. Thus 44 patients aged 20 to 61 years and carrier of HBsAg for at least 06 months were treated with Hepatib tiben. The tests were performed in the laboratory before and three months after the treatment. ELISA tests were used to confirm the presence of HBsAg and search for anti-HCV antibodies;transaminases, creatinine were quantified by the “Chem 400” automaton and the viral load of HBV by Real-time PCR. The analysis of the results reveals an improvement of the biochemical and molecular parameters of the patients with the following means (ASAT: 21.02 ± 9.97;ALAT: 21.11 ± 13.27;DNA: 1571.82 ± 3990.97 with p = 0.01 for each). As for HBsAg, its disappearance was observed in 4.55% of patients after treatment. The evaluation of the creatinine parameter explained that the recipe of plants has a tolerated effect on the kidneys of treated patients. These results, while encouraging, need to be complemented by further research for the development of effective phytomedicine to treat and eliminate this viral hepatitis B virus.展开更多
1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is...1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.展开更多
Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to en...Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to enhance the quality of six formulated flours, all based on Fonio and supplemented with Bambara groundnut, African locust bean fruit pulp, and cashew kernels. Results showed that Fonio had the highest carbohydrate content, while Bambara groundnut and Cashew kernels were rich in protein and lipid content. African locust bean fruit pulp was rich in fiber and Vitamin C, with a high β-carotene value. The cashew kernel had the highest energy value. Regarding mineral composition, African locust bean fruit pulp had the highest potassium content, while Bambara groundnut and African locust bean fruit pulp were rich in sodium. Cashew kernel and Fonio had higher iron and calcium content. Bambara groundnut had a higher zinc content, while cashew kernel had a higher magnesium content. The formulated flours made from fermented Fonio grains and enriched with Bambara groundnut, African locust bean fruit pulp, and cashew kernel had varying protein, fiber, carbohydrate, ash, and fat contents. The flour formulated with sprouted Fonio and enriched with the same ingredients had higher protein content and energy value than the other fermented seed-based flours. The mixed flours produced with fermented seeds and the flour produced from sprouted seeds met international standards. Overall, these findings offer valuable insights into the nutritional composition of the formulated flours and their potential to combat infant malnutrition in Côte d’Ivoire.展开更多
A study of toad infestation was carried out from July to December 2022, in the vicinity of the Mfilou and Ngamboulou Rivers, with the aim of determining the prevalence rate of parasitic carriage in these toads. After ...A study of toad infestation was carried out from July to December 2022, in the vicinity of the Mfilou and Ngamboulou Rivers, with the aim of determining the prevalence rate of parasitic carriage in these toads. After collecting 289 specimens, all belonging to the Anuran order and Bufonidae family, three species were identified: Sclerophrys camerunensis (Parker, 1936), Sclerophrys regularis (Reuss, 1834) and Sclerophrys sp. The most abundant species were Sclerophrys camerunensis, followed by Sclerophrys regularis. With regard to parasitological aspects, of the 289 specimens collected, 195 were parasitized, i.e. a percentage of 67.47%. The only parasitic species identified was Ascaris sp., which is preferentially located in the intestine.展开更多
Afforestation and reforestation are useful approaches to improve carbon sequestration. With the advent of forest plantations, growing environment conditions have become increasingly restrictive for light, soil nutrien...Afforestation and reforestation are useful approaches to improve carbon sequestration. With the advent of forest plantations, growing environment conditions have become increasingly restrictive for light, soil nutrients, and interactions between trees to acquire available resources. Tree biomass data are essential for understanding the forest carbon cycle and plant adaptations to the environment. The distribution of tree biomass depends on the sum of multiple stand conditions. The data are from a dedicated experiment with two very contrasting areas of fertility, and two planting densities, including a high density at planting in order to achieve thinning. The plant material consists of the high-performance clones of Eucalyptus urophylla × E. grandis and the reference clone E. PF1. We hypothesize that the distribution of biomass changes as the intensity of competition changes and that this is accelerated by the fertility of the sites in time. The results indicate that fertilization, planting density and clones have an impact on biomass partitioning.展开更多
Soil ploughing is an important stage in the preparation of planting, causing disturbance to the physical, chemical and biological properties of the soil. Soil ploughing can affect the availability of nutrients and wat...Soil ploughing is an important stage in the preparation of planting, causing disturbance to the physical, chemical and biological properties of the soil. Soil ploughing can affect the availability of nutrients and water resources, and its effect can be short, medium or long-term. Soil ploughing accelerates surface heating and air circulation and encourages mineralisation by transforming organic matter into mineral salts, making nutrients soluble and accessible to plants. The aim of this study is to determine how soil ploughing affects the distribution of nutrients in the soil profile. The study focuses on nitrogen, carbon, phosphorus, calcium and magnesium, which are major elements of soil fertility on the Batéké plateaux in Congo. The results indicate that ploughing significantly modifies the distribution at depth des elements nutritifs: there is more accumulation at the surface than at depth (ei: nitrogen 1.34 t/ha ± 0.035 at 10 cm compared with 1.034 t/ha ± 0.098 at 50 cm) with a higher concentration of carbon (13.89 t/ha ± 0.87) followed by nitrogen (1.34 t/ha ± 0.035).展开更多
The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnet...The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.展开更多
Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials us...Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials used and their implementation principles. However, the cost-efficiency ratio remains a significant challenge for researchers. Currently, organic materials are gaining popularity due to their relatively low cost. However, their performance, particularly in terms of conversion efficiency, still requires improvements. This study focuses on optimizing the organic photovoltaic cell ITO/MoO3/CARAPA/PCBM/Alq3/Al using SCAPS. Several parameters were considered, such as layer thickness, recombination center density, and doping, to improve the cell’s performance. The optimal parameters obtained include an efficiency of 3%, a fill factor of 81.67%, an open-circuit voltage of 1610 mV, and a short-circuit current of 2.28 mA/cm2. The study also revealed that doping the phenyl-C61-butyric acid methyl ester (PCBM) layer has a significant impact on efficiency and short-circuit current, improving these parameters up to a certain point before causing degradation due to increased recombination. Furthermore, high doping of the tri (8-hydroxyquinoline) aluminum (Alq3) layer improves performance up to a critical threshold, after which degradation is also observed. In contrast, doping the molybdenum trioxide (MoO3) layer does not have a notable impact on cell performance. Regarding the thickness of the active Carapaprocera (CARAPA) and PCBM layers, non-optimal values lead to a decrease in performance. Similarly, an optimal thickness of the Alq3 layer significantly improves efficiency. These results highlight the importance of parameter optimization to maximize the efficiency of organic solar cells.展开更多
In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb...In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb enzymes drug targets (Mtb Mycothiol S-transferase and Mtb Homoserine transacetylase) have been adopted. The pharmacological potential was investigated through molecular docking, molecular dynamics simulation, density functional theory (gas phase and water) and ADMET analysis. Our results indicate that (2R,5R,6S)-1,2,3,4,5,6,7,8-octahydro-5-((E)-5-hydroxy-3-methylpent-3-enyl)-1,1,5,6-tetramethylnaphtha-lene-2-ol (compound 20) has displays higher docking score with each of the selected drug targets. In addition, this molecule exhibits a satisfactory drug potential activity and a good chemical reactivity. Its improved kinetic stability in the Mtb Mycothiol S-transferase enzyme reflects its suitability as a novel inhibitor of Mtb growth. This molecule has displayed a good absorption potential. Our results also show that its passive passage of the intestinal permeability barrier is more effective than that of first-line treatments (ethambutol, isoniazid). In the same way, this anti-TB druglikeness has shown to be able to cross the blood brain barrier.展开更多
It is acknowledged today within the scientific community that two types of actions must be considered to limit global warming: mitigation actions by reducing GHG emissions, to contain the rate of global warming, and a...It is acknowledged today within the scientific community that two types of actions must be considered to limit global warming: mitigation actions by reducing GHG emissions, to contain the rate of global warming, and adaptation actions to adapt societies to Climate Change, to limit losses and damages [1] [2]. As far as adaptation actions are concerned, numerical simulation, due to its results, its costs which require less investment than tests carried out on complex mechanical structures, and its implementation facilities, appears to be a major step in the design and prediction of complex mechanical systems. However, despite the quality of the results obtained, biases and inaccuracies related to the structure of the models do exist. Therefore, there is a need to validate the results of this SARIMA-LSTM-digital learning model adjusted by a matching approach, “calculating-test”, in order to assess the quality of the results and the performance of the model. The methodology consists of exploiting two climatic databases (temperature and precipitation), one of which is in-situ and the other spatial, all derived from grid points. Data from the dot grids are processed and stored in specific formats and, through machine learning approaches, complex mathematical equations are worked out and interconnections within the climate system established. Through this mathematical approach, it is possible to predict the future climate of the Sudano-Sahelian zone of Cameroon and to propose adaptation strategies.展开更多
Cancer is one of the deadliest diseases in developing countries. In recent years, natural plant-based compounds have been used in the search for drugs to combat numerous diseases, including cancer. In this study, we e...Cancer is one of the deadliest diseases in developing countries. In recent years, natural plant-based compounds have been used in the search for drugs to combat numerous diseases, including cancer. In this study, we evaluate the cytotoxic properties of paanfo tiben 1 and paanfo tiben 2, two traditional herbal formulations from Burkina Faso used in the treatment of cancer in Burkina Faso. To this end, the recipes were infused and freeze-dried. The dry extracts obtained were used to determine total phenolics and flavonoids content, assess antioxidant activity using the DPPH, ABTS and FRAP methods, evaluate anti-inflammatory properties by inhibiting 15-LOX, COX 1 and 2, and assess cytotoxic activity on HeLa cervical cancer and HePG2 liver cancer cell lines using the MTT test. The paanfo tiben 1 recipe showed the highest levels of total phenolics and flavonoids, as well as the best antioxidant activities, with IC50 values of 21.020 ± 0.6 µg/ml and 22.94 ± 0.57 µg/ml for DPPH and ABTS, and 165.15 mM EAA/mg dry extract for FRAP. It also exhibited the best cytotoxic activity with IC50 values of 112.02 ± 0.025 µg/ml on HeLa cells and 80.67 ± 6.08 µg/ml on HepG2 cells. On the other hand, paanfo tiben 2 exhibited the best anti-inflammatory activities through inhibition of 15-LOX and COX 1, with inhibition percentages at 100 µg/ml of 32.523% and 24.717 % respectively. These results could justify the traditional use of these two recipes by traditional health practitioners in the treatment of cancer sufferers in Burkina Faso.展开更多
ACAZY is a plant formula used in traditional medicine in Burkina Faso to treat respiratory infections. After phytochemical analysis, this study evaluated extracts’ anti-inflammatory, antioxidant and antibacterial pro...ACAZY is a plant formula used in traditional medicine in Burkina Faso to treat respiratory infections. After phytochemical analysis, this study evaluated extracts’ anti-inflammatory, antioxidant and antibacterial properties from the ACAZY recipe. Three extractions, an aqueous macerate (AM), an aqueous decoction (AD) and an hydroethanolic macerate (HEM) of the ACAZY recipe powder were carried out. Phytochemical screening of the extracts was carried out using high-performance thin-layer chromatography (HPTLC) and the determination of phenolic compounds. The anti-inflammatory potential was assessed in vitro using pro-inflammatory enzyme inhibition tests. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and Ferric-reducing antioxidant power (FRAP) antioxidant properties were also determined. The antibacterial activity was evaluated on Staphylococcus aureus and Streptococcus pneumoniae strains. Phytochemical analysis revealed the presence of flavonoids, saponins, tannins, anthracenosids, sterols and triterpenes in the extracts. The extracts inhibited pro-inflammatory enzymes by more than 40% at only 100 µg/mL. The extracts also showed potent antibacterial activity with a minimum inhibitory concentration 1 mg/mL on Staphylococcus aureus and 2 mg/mL on Streptococcus pneumoniae. The extracts in the ACAZY formula have shown anti-inflammatory and antioxidant properties in vitro. The AD also showed an antibacterial activity. This justifies its use in traditional medicine to treat acute respiratory infections.展开更多
In the context of the recovery of agricultural waste, many researches have focused on the preparation of adsorbents from natural waste from fruit trees, egg shells, palm waste or sawdust. This work aims to optimize th...In the context of the recovery of agricultural waste, many researches have focused on the preparation of adsorbents from natural waste from fruit trees, egg shells, palm waste or sawdust. This work aims to optimize the preparation of a biosorbent from rubber hulls by studying its ability to adsorb small and medium molecules. The influence of parameters such as drying temperature (X1), particle size (X2), stirring time (X3) and sodium hypochloride mass (X4) was studied. The results indicate that the model used for biosorbent optimization on methylene blue and iodine index is significant. In addition, this model has greater adsorption capabilities on small molecules than with large molecules. Statistical analysis of the data shows that temperature is the most influential factor in the adsorption of small molecules. On the other hand, particle size has a significant influence on the adsorption of large molecules. The optimum biosorbent preparation values are 1.0 for drying temperature (X1), −1.0 for biosorbent grain size (X2), 1.0 for stirring time (X3) and 1.0 for sodium hypochloride mass (X4).展开更多
This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared...This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).展开更多
In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped ...In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.展开更多
This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind tur...This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.展开更多
Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term. It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale hig...Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term. It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale highly oscillatory hyperbolic problems converges to the solution to a homogenized quasilinear hyperbolic problem.展开更多
The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies i...The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.展开更多
The residual biomass composed of pseudo trunks and banana leaves is very important and poorly valued. There is very little quantified data on the deposits of residual biomass from banana plantations in Senegal and in ...The residual biomass composed of pseudo trunks and banana leaves is very important and poorly valued. There is very little quantified data on the deposits of residual biomass from banana plantations in Senegal and in particular in the Tambacounda region. In this work, we seek to evaluate the methanogenic potential and to valorize this biomass in biogas and biofertilizer. The laboratory experiment lasted approximately 35 days. During this time, the methanogenic microorganisms degrade the organic residue provided, which results in the production of biogas. At the end of the reactions, the rate of biogas production drops, indicating the end of the biodegradation of organic matter. Biogas production is measured over time and the composition of the biogas produced is analyzed by gas chromatography (GC) or by an infrared analyzer. The methane potential of each sample is determined from the cumulative quantity of methane produced in each flask representing a digestion system. The measurement can be expressed in m3 of CH4 per tonne of dry matter or per tonne of raw material. The first challenge of this study therefore lies in the acquisition of reliable and usable data to quantify the methanizable biomass. This study will allow us not only to evaluate the quantities of pseudo trunks and banana leaves available in a plot after harvest but also to test the biogas and methane production potential (BMP test) of this substrate and therefore determine the expected biogas production of this biomass.展开更多
文摘Management of the Pointe-Noire Forest requires high-performance tools for simulating tree and stand growth and assessing the sustainability of plantations. Modelling the dynamics of even-aged and mono-species stands is a very active research topic. The approaches adopted by researchers vary according to the objectives and species considered: dendrometrical, Eco physiological or architectural. Thanks to the particular nature of these plantations and the trial set-up, it will be possible to explore the various aspects of production, clearly separating the part linked to genetics (three clones tested) from the part linked to the environment (via fertilisation) and the part associated with competition between trees (via planting densities and thinning regimes). This study will make a major contribution to the applicability of the self-thinning line and the RDI (Reineke Density Index) (Reineke, 1933) to fast-growing plantations. This research work will contribute to two points: 1) product diversification, which is a way of coping with international variations in timber markets, and 2) understanding how ecosystems function in exceptionally poor conditions, which will then enable the environmental impacts of the various recommended silvicultural itineraries to be assessed. The results obtained show that competition between trees in a stand of eucalyptus at very high density (10,000 stems/ha) and in two environments of very contrasting fertility is different depending on the clone. The decision on the date of the first thinning with a view to silviculture for timber and energy wood, which aims to ensure sustained and sustainable production of eucalyptus wood in these soils, should be taken between 12 and 14 months. The competition band is strong between 14 and 17 months, when the RDI = 0.8 is double that observed at 12 months.
文摘Chronic viral hepatitis B (HBV) remains a major public health problem in Burkina Faso. Since access to diagnostic tests and treatments is limited because of their high cost, the majority of the population turn to traditional herbal treatments. This study aimed to evaluate the effectiveness of a plant recipe called Hepatib tiben. It consisted of comparing certain biochemical and molecular parameters of patients infected with HBV that were supported by the recipe. The patients were recruited in Ouagadougou by the traditional health practitioner according to the requirements of the study. Thus 44 patients aged 20 to 61 years and carrier of HBsAg for at least 06 months were treated with Hepatib tiben. The tests were performed in the laboratory before and three months after the treatment. ELISA tests were used to confirm the presence of HBsAg and search for anti-HCV antibodies;transaminases, creatinine were quantified by the “Chem 400” automaton and the viral load of HBV by Real-time PCR. The analysis of the results reveals an improvement of the biochemical and molecular parameters of the patients with the following means (ASAT: 21.02 ± 9.97;ALAT: 21.11 ± 13.27;DNA: 1571.82 ± 3990.97 with p = 0.01 for each). As for HBsAg, its disappearance was observed in 4.55% of patients after treatment. The evaluation of the creatinine parameter explained that the recipe of plants has a tolerated effect on the kidneys of treated patients. These results, while encouraging, need to be complemented by further research for the development of effective phytomedicine to treat and eliminate this viral hepatitis B virus.
文摘1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.
文摘Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to enhance the quality of six formulated flours, all based on Fonio and supplemented with Bambara groundnut, African locust bean fruit pulp, and cashew kernels. Results showed that Fonio had the highest carbohydrate content, while Bambara groundnut and Cashew kernels were rich in protein and lipid content. African locust bean fruit pulp was rich in fiber and Vitamin C, with a high β-carotene value. The cashew kernel had the highest energy value. Regarding mineral composition, African locust bean fruit pulp had the highest potassium content, while Bambara groundnut and African locust bean fruit pulp were rich in sodium. Cashew kernel and Fonio had higher iron and calcium content. Bambara groundnut had a higher zinc content, while cashew kernel had a higher magnesium content. The formulated flours made from fermented Fonio grains and enriched with Bambara groundnut, African locust bean fruit pulp, and cashew kernel had varying protein, fiber, carbohydrate, ash, and fat contents. The flour formulated with sprouted Fonio and enriched with the same ingredients had higher protein content and energy value than the other fermented seed-based flours. The mixed flours produced with fermented seeds and the flour produced from sprouted seeds met international standards. Overall, these findings offer valuable insights into the nutritional composition of the formulated flours and their potential to combat infant malnutrition in Côte d’Ivoire.
文摘A study of toad infestation was carried out from July to December 2022, in the vicinity of the Mfilou and Ngamboulou Rivers, with the aim of determining the prevalence rate of parasitic carriage in these toads. After collecting 289 specimens, all belonging to the Anuran order and Bufonidae family, three species were identified: Sclerophrys camerunensis (Parker, 1936), Sclerophrys regularis (Reuss, 1834) and Sclerophrys sp. The most abundant species were Sclerophrys camerunensis, followed by Sclerophrys regularis. With regard to parasitological aspects, of the 289 specimens collected, 195 were parasitized, i.e. a percentage of 67.47%. The only parasitic species identified was Ascaris sp., which is preferentially located in the intestine.
文摘Afforestation and reforestation are useful approaches to improve carbon sequestration. With the advent of forest plantations, growing environment conditions have become increasingly restrictive for light, soil nutrients, and interactions between trees to acquire available resources. Tree biomass data are essential for understanding the forest carbon cycle and plant adaptations to the environment. The distribution of tree biomass depends on the sum of multiple stand conditions. The data are from a dedicated experiment with two very contrasting areas of fertility, and two planting densities, including a high density at planting in order to achieve thinning. The plant material consists of the high-performance clones of Eucalyptus urophylla × E. grandis and the reference clone E. PF1. We hypothesize that the distribution of biomass changes as the intensity of competition changes and that this is accelerated by the fertility of the sites in time. The results indicate that fertilization, planting density and clones have an impact on biomass partitioning.
文摘Soil ploughing is an important stage in the preparation of planting, causing disturbance to the physical, chemical and biological properties of the soil. Soil ploughing can affect the availability of nutrients and water resources, and its effect can be short, medium or long-term. Soil ploughing accelerates surface heating and air circulation and encourages mineralisation by transforming organic matter into mineral salts, making nutrients soluble and accessible to plants. The aim of this study is to determine how soil ploughing affects the distribution of nutrients in the soil profile. The study focuses on nitrogen, carbon, phosphorus, calcium and magnesium, which are major elements of soil fertility on the Batéké plateaux in Congo. The results indicate that ploughing significantly modifies the distribution at depth des elements nutritifs: there is more accumulation at the surface than at depth (ei: nitrogen 1.34 t/ha ± 0.035 at 10 cm compared with 1.034 t/ha ± 0.098 at 50 cm) with a higher concentration of carbon (13.89 t/ha ± 0.87) followed by nitrogen (1.34 t/ha ± 0.035).
文摘The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.
文摘Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials used and their implementation principles. However, the cost-efficiency ratio remains a significant challenge for researchers. Currently, organic materials are gaining popularity due to their relatively low cost. However, their performance, particularly in terms of conversion efficiency, still requires improvements. This study focuses on optimizing the organic photovoltaic cell ITO/MoO3/CARAPA/PCBM/Alq3/Al using SCAPS. Several parameters were considered, such as layer thickness, recombination center density, and doping, to improve the cell’s performance. The optimal parameters obtained include an efficiency of 3%, a fill factor of 81.67%, an open-circuit voltage of 1610 mV, and a short-circuit current of 2.28 mA/cm2. The study also revealed that doping the phenyl-C61-butyric acid methyl ester (PCBM) layer has a significant impact on efficiency and short-circuit current, improving these parameters up to a certain point before causing degradation due to increased recombination. Furthermore, high doping of the tri (8-hydroxyquinoline) aluminum (Alq3) layer improves performance up to a critical threshold, after which degradation is also observed. In contrast, doping the molybdenum trioxide (MoO3) layer does not have a notable impact on cell performance. Regarding the thickness of the active Carapaprocera (CARAPA) and PCBM layers, non-optimal values lead to a decrease in performance. Similarly, an optimal thickness of the Alq3 layer significantly improves efficiency. These results highlight the importance of parameter optimization to maximize the efficiency of organic solar cells.
文摘In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb enzymes drug targets (Mtb Mycothiol S-transferase and Mtb Homoserine transacetylase) have been adopted. The pharmacological potential was investigated through molecular docking, molecular dynamics simulation, density functional theory (gas phase and water) and ADMET analysis. Our results indicate that (2R,5R,6S)-1,2,3,4,5,6,7,8-octahydro-5-((E)-5-hydroxy-3-methylpent-3-enyl)-1,1,5,6-tetramethylnaphtha-lene-2-ol (compound 20) has displays higher docking score with each of the selected drug targets. In addition, this molecule exhibits a satisfactory drug potential activity and a good chemical reactivity. Its improved kinetic stability in the Mtb Mycothiol S-transferase enzyme reflects its suitability as a novel inhibitor of Mtb growth. This molecule has displayed a good absorption potential. Our results also show that its passive passage of the intestinal permeability barrier is more effective than that of first-line treatments (ethambutol, isoniazid). In the same way, this anti-TB druglikeness has shown to be able to cross the blood brain barrier.
文摘It is acknowledged today within the scientific community that two types of actions must be considered to limit global warming: mitigation actions by reducing GHG emissions, to contain the rate of global warming, and adaptation actions to adapt societies to Climate Change, to limit losses and damages [1] [2]. As far as adaptation actions are concerned, numerical simulation, due to its results, its costs which require less investment than tests carried out on complex mechanical structures, and its implementation facilities, appears to be a major step in the design and prediction of complex mechanical systems. However, despite the quality of the results obtained, biases and inaccuracies related to the structure of the models do exist. Therefore, there is a need to validate the results of this SARIMA-LSTM-digital learning model adjusted by a matching approach, “calculating-test”, in order to assess the quality of the results and the performance of the model. The methodology consists of exploiting two climatic databases (temperature and precipitation), one of which is in-situ and the other spatial, all derived from grid points. Data from the dot grids are processed and stored in specific formats and, through machine learning approaches, complex mathematical equations are worked out and interconnections within the climate system established. Through this mathematical approach, it is possible to predict the future climate of the Sudano-Sahelian zone of Cameroon and to propose adaptation strategies.
文摘Cancer is one of the deadliest diseases in developing countries. In recent years, natural plant-based compounds have been used in the search for drugs to combat numerous diseases, including cancer. In this study, we evaluate the cytotoxic properties of paanfo tiben 1 and paanfo tiben 2, two traditional herbal formulations from Burkina Faso used in the treatment of cancer in Burkina Faso. To this end, the recipes were infused and freeze-dried. The dry extracts obtained were used to determine total phenolics and flavonoids content, assess antioxidant activity using the DPPH, ABTS and FRAP methods, evaluate anti-inflammatory properties by inhibiting 15-LOX, COX 1 and 2, and assess cytotoxic activity on HeLa cervical cancer and HePG2 liver cancer cell lines using the MTT test. The paanfo tiben 1 recipe showed the highest levels of total phenolics and flavonoids, as well as the best antioxidant activities, with IC50 values of 21.020 ± 0.6 µg/ml and 22.94 ± 0.57 µg/ml for DPPH and ABTS, and 165.15 mM EAA/mg dry extract for FRAP. It also exhibited the best cytotoxic activity with IC50 values of 112.02 ± 0.025 µg/ml on HeLa cells and 80.67 ± 6.08 µg/ml on HepG2 cells. On the other hand, paanfo tiben 2 exhibited the best anti-inflammatory activities through inhibition of 15-LOX and COX 1, with inhibition percentages at 100 µg/ml of 32.523% and 24.717 % respectively. These results could justify the traditional use of these two recipes by traditional health practitioners in the treatment of cancer sufferers in Burkina Faso.
文摘ACAZY is a plant formula used in traditional medicine in Burkina Faso to treat respiratory infections. After phytochemical analysis, this study evaluated extracts’ anti-inflammatory, antioxidant and antibacterial properties from the ACAZY recipe. Three extractions, an aqueous macerate (AM), an aqueous decoction (AD) and an hydroethanolic macerate (HEM) of the ACAZY recipe powder were carried out. Phytochemical screening of the extracts was carried out using high-performance thin-layer chromatography (HPTLC) and the determination of phenolic compounds. The anti-inflammatory potential was assessed in vitro using pro-inflammatory enzyme inhibition tests. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and Ferric-reducing antioxidant power (FRAP) antioxidant properties were also determined. The antibacterial activity was evaluated on Staphylococcus aureus and Streptococcus pneumoniae strains. Phytochemical analysis revealed the presence of flavonoids, saponins, tannins, anthracenosids, sterols and triterpenes in the extracts. The extracts inhibited pro-inflammatory enzymes by more than 40% at only 100 µg/mL. The extracts also showed potent antibacterial activity with a minimum inhibitory concentration 1 mg/mL on Staphylococcus aureus and 2 mg/mL on Streptococcus pneumoniae. The extracts in the ACAZY formula have shown anti-inflammatory and antioxidant properties in vitro. The AD also showed an antibacterial activity. This justifies its use in traditional medicine to treat acute respiratory infections.
文摘In the context of the recovery of agricultural waste, many researches have focused on the preparation of adsorbents from natural waste from fruit trees, egg shells, palm waste or sawdust. This work aims to optimize the preparation of a biosorbent from rubber hulls by studying its ability to adsorb small and medium molecules. The influence of parameters such as drying temperature (X1), particle size (X2), stirring time (X3) and sodium hypochloride mass (X4) was studied. The results indicate that the model used for biosorbent optimization on methylene blue and iodine index is significant. In addition, this model has greater adsorption capabilities on small molecules than with large molecules. Statistical analysis of the data shows that temperature is the most influential factor in the adsorption of small molecules. On the other hand, particle size has a significant influence on the adsorption of large molecules. The optimum biosorbent preparation values are 1.0 for drying temperature (X1), −1.0 for biosorbent grain size (X2), 1.0 for stirring time (X3) and 1.0 for sodium hypochloride mass (X4).
文摘This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).
文摘In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.
文摘This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.
文摘Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term. It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale highly oscillatory hyperbolic problems converges to the solution to a homogenized quasilinear hyperbolic problem.
文摘The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.
文摘The residual biomass composed of pseudo trunks and banana leaves is very important and poorly valued. There is very little quantified data on the deposits of residual biomass from banana plantations in Senegal and in particular in the Tambacounda region. In this work, we seek to evaluate the methanogenic potential and to valorize this biomass in biogas and biofertilizer. The laboratory experiment lasted approximately 35 days. During this time, the methanogenic microorganisms degrade the organic residue provided, which results in the production of biogas. At the end of the reactions, the rate of biogas production drops, indicating the end of the biodegradation of organic matter. Biogas production is measured over time and the composition of the biogas produced is analyzed by gas chromatography (GC) or by an infrared analyzer. The methane potential of each sample is determined from the cumulative quantity of methane produced in each flask representing a digestion system. The measurement can be expressed in m3 of CH4 per tonne of dry matter or per tonne of raw material. The first challenge of this study therefore lies in the acquisition of reliable and usable data to quantify the methanizable biomass. This study will allow us not only to evaluate the quantities of pseudo trunks and banana leaves available in a plot after harvest but also to test the biogas and methane production potential (BMP test) of this substrate and therefore determine the expected biogas production of this biomass.