The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial...The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.展开更多
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli...Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.展开更多
Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioni...Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.展开更多
In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order...In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.展开更多
With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite comm...With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite communication provides a large coverage area suitable for a variety of services and is less affected by geographical factors;moreover,the costs are independent of the communication distance.This study investigates information acquisition technology for small hydropower stations in remote areas using high-and low-orbit satellites.The information collection needs of small hydropower stations in remote areas are analyzed,and an information acquisition system is designed using high-and low-orbit satellites.For network security protection,network anomaly detection technology based on a support vector machine algorithm is proposed.The effectiveness of information collection was evaluated and verified for small hydropower plants in remote areas.The system provides technical support for“full coverage,full collection,and full monitoring”of the measurement automation information acquisition system.展开更多
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration...Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.展开更多
This paper proposes a new approach for online power system transient security assessment(TSA)and preventive control based on XGBoost and DC optimal power flow(DCOPF).The novelty of this proposal is that it applies the...This paper proposes a new approach for online power system transient security assessment(TSA)and preventive control based on XGBoost and DC optimal power flow(DCOPF).The novelty of this proposal is that it applies the XGBoost and data selection method based on the 1-norm distance in local feature importance evaluation which can provide a certain model interpretability.The method of SMOTE+ENN is adopted for data rebalancing.The contingency-oriented XGBoost model is trained with databases generated by time domain simulations to represent the transient security constraint in the DCOPF model,which has a relatively fast speed of calculation.The transient security constrained generation rescheduling is implemented with the differential evolution algorithm,which is utilized to optimize the rescheduled generation in the preventive control.Feasibility and effectiveness of the proposed approach are demonstrated on an IEEE 39-bus test system and a 500-bus operational model for South Carolina,USA.展开更多
A static security assessment approach considering electro-thermal coupling of transmission lines is proposed in this paper. Combined with the dynamic thermal rating technology and energy forecasting, the approach can ...A static security assessment approach considering electro-thermal coupling of transmission lines is proposed in this paper. Combined with the dynamic thermal rating technology and energy forecasting, the approach can track both the electrical variables and transmission lines’ temperature varying trajectory under anticipated contingencies. Accordingly, it identifies the serious contingencies by transmission lines’ temperature violation rather than its power flow, in this case the time margin of temperature rising under each serious contingency can be provided to operators as warning information and some unnecessary security control can also be avoided. Finally, numerical simulations are carried out to testify the validity of the proposed approach.展开更多
This paper analyzes the problems of the relay protections and secondary circuits of traditional substations,and introduces the hierarchical protection and control system of smart substations based on the technologies ...This paper analyzes the problems of the relay protections and secondary circuits of traditional substations,and introduces the hierarchical protection and control system of smart substations based on the technologies like IEC 61850 Standard,electronic instrument transformer,process level network,and wide area optical fiber communication network,etc.The hierarchical protection and control system includes three levels:local area protection,substation area protection and control,and wide area protection and control.These three levels are combined to solve the problems of the relay protections in traditional substations,thus improving protection performance and control capability of the system.展开更多
Along with the improvement of electrical equipment reliability,people’s unsafe behaviors and human errors have become one of main sources of risks in power systems.However,there is no comprehensive study on human fac...Along with the improvement of electrical equipment reliability,people’s unsafe behaviors and human errors have become one of main sources of risks in power systems.However,there is no comprehensive study on human factors and human reliability analysis in power systems.In allusion to this situation,this paper attempts to analyze the impact of human factors on power system reliability.First,this paper introduces current situation of human factors in power systems and the latest research progress in this field.Several analysis methods are proposed according to specified situations,and these methods are verified by some power system practical cases.On this base,this paper illustrates how human factors affect power system operation reliability from 2 typical aspects:imperfect maintenance caused by human errors,and impact of human factors on emergency dispatch operation and power system cascading failure.Finally,based on information decision and action in crew(IDAC),a novel dispatcher training evaluation simulation system(DTESS)is established,which can incorporate all influencing factors.Once fully developed,DTESS can be used to simulate dispatchers’response when encountering an initial event,and improve power system dispatching reliability.展开更多
The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To ...The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.展开更多
Over the past decade,China has undertaken substation intellectualization of more than 2000 substation operations in three stages.Much experience has been achieved during this developmental period.In this paper,the sta...Over the past decade,China has undertaken substation intellectualization of more than 2000 substation operations in three stages.Much experience has been achieved during this developmental period.In this paper,the status of smart substation development in China is systematically presented,as well as future directions of the smart substation,such as adoption of the hierarchical protection and control system.展开更多
Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),w...Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may deteriorate application performance based on PMUs.To address that,this paper proposes two robust methods of correcting time-varying PAD deviation with unknown parameters of TL(ParTL).First,the phenomena of time-varying PAD deviation observed from field PMU data are presented.Two general formulations for PAD estimation are then established.To simplify the formulations,estimation of PADs is converted into the optimal problem with a single ParTL as the variable,yielding a linear estimation of PADs.The latter is used by second-order Taylor series expansion to estimate PADs accurately.To reduce the impact of possible abnormal amplitude data in field data,the IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)weighting function is adopted.Results using both simulated and field data verify the effectiveness and robustness of the proposed methods.展开更多
Charge transport in oil impregnated paper impacts the insulation performance of a transformer.This paper proposes a simulation method for the charge transport in oil impregnated paper insulation.The transient upstream...Charge transport in oil impregnated paper impacts the insulation performance of a transformer.This paper proposes a simulation method for the charge transport in oil impregnated paper insulation.The transient upstream finite element method(FEM)is applied to the transport equations of bipolar charges for establishing a numerical simulation model of charge transport in oil impregnated paper insulation.The method is validated by experimental results.The charge transport and electric field distribution in single-layer oil impregnated paper insulation under different temperature gradients is simulated.The trends of the simulation results are seen to agree with the corresponding experimental results.This paper conducts exploratory research into the simulation of charge transportation phenomenon in oil impregnated paper,and is of importance to the design of oil impregnated paper insulation.展开更多
基金supported by China Southern Power Grid Technology Project under Grant 03600KK52220019(GDKJXM20220253).
文摘The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.
基金supported by Science and Technology Project of China Southern Power Grid Company Limited under Grant Number 036000KK52200058(GDKJXM20202001).
文摘Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.
基金funded by the National Natural Science Foundation of China(52077004)Anhui Electric Power Company of the State Grid(52120021N00L).
文摘Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.
基金supported by the Jilin Province Higher Education TeachingReform Research Project Funding(Contract No.2020285O73B005E).
文摘In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.
基金funded by the Guangdong Power Grid Co.,Ltd.Technology Project(GDKJXM20180019).
文摘With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite communication provides a large coverage area suitable for a variety of services and is less affected by geographical factors;moreover,the costs are independent of the communication distance.This study investigates information acquisition technology for small hydropower stations in remote areas using high-and low-orbit satellites.The information collection needs of small hydropower stations in remote areas are analyzed,and an information acquisition system is designed using high-and low-orbit satellites.For network security protection,network anomaly detection technology based on a support vector machine algorithm is proposed.The effectiveness of information collection was evaluated and verified for small hydropower plants in remote areas.The system provides technical support for“full coverage,full collection,and full monitoring”of the measurement automation information acquisition system.
文摘Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB0905900.
文摘This paper proposes a new approach for online power system transient security assessment(TSA)and preventive control based on XGBoost and DC optimal power flow(DCOPF).The novelty of this proposal is that it applies the XGBoost and data selection method based on the 1-norm distance in local feature importance evaluation which can provide a certain model interpretability.The method of SMOTE+ENN is adopted for data rebalancing.The contingency-oriented XGBoost model is trained with databases generated by time domain simulations to represent the transient security constraint in the DCOPF model,which has a relatively fast speed of calculation.The transient security constrained generation rescheduling is implemented with the differential evolution algorithm,which is utilized to optimize the rescheduled generation in the preventive control.Feasibility and effectiveness of the proposed approach are demonstrated on an IEEE 39-bus test system and a 500-bus operational model for South Carolina,USA.
文摘A static security assessment approach considering electro-thermal coupling of transmission lines is proposed in this paper. Combined with the dynamic thermal rating technology and energy forecasting, the approach can track both the electrical variables and transmission lines’ temperature varying trajectory under anticipated contingencies. Accordingly, it identifies the serious contingencies by transmission lines’ temperature violation rather than its power flow, in this case the time margin of temperature rising under each serious contingency can be provided to operators as warning information and some unnecessary security control can also be avoided. Finally, numerical simulations are carried out to testify the validity of the proposed approach.
文摘This paper analyzes the problems of the relay protections and secondary circuits of traditional substations,and introduces the hierarchical protection and control system of smart substations based on the technologies like IEC 61850 Standard,electronic instrument transformer,process level network,and wide area optical fiber communication network,etc.The hierarchical protection and control system includes three levels:local area protection,substation area protection and control,and wide area protection and control.These three levels are combined to solve the problems of the relay protections in traditional substations,thus improving protection performance and control capability of the system.
基金supported by the State Key Program of National Natural Science Foundation of China (No.51537010)Zhejiang Provincial Natural Science Foundation (No.LZ14E070001)
文摘Along with the improvement of electrical equipment reliability,people’s unsafe behaviors and human errors have become one of main sources of risks in power systems.However,there is no comprehensive study on human factors and human reliability analysis in power systems.In allusion to this situation,this paper attempts to analyze the impact of human factors on power system reliability.First,this paper introduces current situation of human factors in power systems and the latest research progress in this field.Several analysis methods are proposed according to specified situations,and these methods are verified by some power system practical cases.On this base,this paper illustrates how human factors affect power system operation reliability from 2 typical aspects:imperfect maintenance caused by human errors,and impact of human factors on emergency dispatch operation and power system cascading failure.Finally,based on information decision and action in crew(IDAC),a novel dispatcher training evaluation simulation system(DTESS)is established,which can incorporate all influencing factors.Once fully developed,DTESS can be used to simulate dispatchers’response when encountering an initial event,and improve power system dispatching reliability.
基金supported in part by National Key Research and Development Program of China(No.2018YFB0905000)in part by Key Research and Development Program of Shaanxi(No.2017ZDCXL-GY-02-03)。
文摘The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.
基金National Natural Science Foundation of China under Grant 51120175001Key Project of Smart Grid Technology and Equipment of National Key Research and Development Plan of China under Grant 2016YFB0900600Science and Technology Project of State Grid Corporation of China under Grant GWKJ2013-005.
文摘Over the past decade,China has undertaken substation intellectualization of more than 2000 substation operations in three stages.Much experience has been achieved during this developmental period.In this paper,the status of smart substation development in China is systematically presented,as well as future directions of the smart substation,such as adoption of the hierarchical protection and control system.
基金This work was supported by the National Key Research and Development Program of China(2017YFB0902901)National Natural Science Foundation of China(51627811).
文摘Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may deteriorate application performance based on PMUs.To address that,this paper proposes two robust methods of correcting time-varying PAD deviation with unknown parameters of TL(ParTL).First,the phenomena of time-varying PAD deviation observed from field PMU data are presented.Two general formulations for PAD estimation are then established.To simplify the formulations,estimation of PADs is converted into the optimal problem with a single ParTL as the variable,yielding a linear estimation of PADs.The latter is used by second-order Taylor series expansion to estimate PADs accurately.To reduce the impact of possible abnormal amplitude data in field data,the IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)weighting function is adopted.Results using both simulated and field data verify the effectiveness and robustness of the proposed methods.
基金supported by the National Basic Research Program(973 Program)(2011CB209404)National Natural Science Foundation of China(51477120).
文摘Charge transport in oil impregnated paper impacts the insulation performance of a transformer.This paper proposes a simulation method for the charge transport in oil impregnated paper insulation.The transient upstream finite element method(FEM)is applied to the transport equations of bipolar charges for establishing a numerical simulation model of charge transport in oil impregnated paper insulation.The method is validated by experimental results.The charge transport and electric field distribution in single-layer oil impregnated paper insulation under different temperature gradients is simulated.The trends of the simulation results are seen to agree with the corresponding experimental results.This paper conducts exploratory research into the simulation of charge transportation phenomenon in oil impregnated paper,and is of importance to the design of oil impregnated paper insulation.