Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high...Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials.展开更多
This article analyzes the design and integrates application of a mine integrated automation system platform based on PON. At the beginning, the paper analyzes the basic principle and structure of PON. The set of integ...This article analyzes the design and integrates application of a mine integrated automation system platform based on PON. At the beginning, the paper analyzes the basic principle and structure of PON. The set of integrated automation network platform according to the information transmission characteristics of mine based on access network and Ethernet of PON is designed. The paper descripes the platform in detail from aspacts of designs of system hardware, software and others. The results show that the system platform can improve the efficiency and reduce the cost.展开更多
With the continuous development and progress of science and technology in China, automation technology has occupied an important position in many fields while its application in power system is increasingly widespread...With the continuous development and progress of science and technology in China, automation technology has occupied an important position in many fields while its application in power system is increasingly widespread. Therefore, the application of electrical automation technology in power system is of great significance for power supply stability and work efficiency. In this paper, the author analyzes the application of electric automation technology in power system and makes contributions to the sustainable and stable development of power enterprises.展开更多
The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristi...The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.展开更多
The electroencephalogram(EEG)rhythm and functional near-infrared spectroscopy(fNIRS)activation levels have not been compared between a healthy control group(HCG)and methamphetamine user group(MUG)with different addict...The electroencephalogram(EEG)rhythm and functional near-infrared spectroscopy(fNIRS)activation levels have not been compared between a healthy control group(HCG)and methamphetamine user group(MUG)with different addiction histories.This study used 64-electrode EEG and fNIRS to conduct an experiment that analyzed the resting and craving states.The EEG and fNIRS data of 56 participants were collected,including 14 healthy participants,14 methamphetamine users with an addiction history of 0.5–5 years,14 users with an addiction history of 5–10 years,and 14 users with an addiction history of 10–15 years.Isolated effective coherence(iCoh)within the brain network was used to process the EEG data.Statistical analysis was performed to compare differences in iCoh among the delta,theta,alpha,beta,and gamma bands and explore oxyhemoglobin activation levels in the ventrolateral prefrontal cortex,dorsolateral prefrontal cortex,orbitofrontal cortex,and frontopolar prefrontal cortex(FPC)of the control group.Finally,the Kmeans,Gaussian mixed model(GMM),linear discriminant analysis(LDA),support vector machine(SVM),Bayes,and convolutional neural networks(CNN)algorithms were used to classify methamphetamine users based on drug and neutral images.A 3-class accuracy was achieved.Changes in EEG and fNIRS activation levels of HCG and MUG with varied addiction histories were demonstrated.展开更多
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent...Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.展开更多
Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means...Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for vol...Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.展开更多
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b...The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.展开更多
This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The...This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.展开更多
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a...Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.展开更多
This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a suffi...This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.展开更多
As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health management(PHM)domain,transfer learning provides a fundamental solution to enhance generalization of datadri...As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health management(PHM)domain,transfer learning provides a fundamental solution to enhance generalization of datadriven methods.In this paper,we briefly discuss general idea and advances of various transfer learning techniques in PHM domain,including domain adaptation,domain generalization,federated learning,and knowledge-driven transfer learning.Based on the observations from state of the art,we provide extensive discussions on possible challenges and opportunities of transfer learning in PHM domain to direct future development.展开更多
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ...Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.展开更多
Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th...Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.展开更多
The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighti...The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighting and an improved technique for order of preference by similarity to ideal solution(TOPSIS)method to perform an objective and scientific evaluation of the transformer oil-paper insulation state.Firstly,multiple aging features are extracted from the recovery voltage polarization spectrum and the extended Debye equivalent circuit owing to the limitations of using a single feature for evaluation.A standard evaluation index system is then established by using the collected time-domain dielectric spectrum data.Secondly,this study implements the per-unit value concept to integrate the dimension of the index matrix and calculates the objective weight by using the random forest algorithm.Furthermore,it combines the weighting model to overcome the drawbacks of the single weighting method by using the indicators and considering the subjective experience of experts and the random forest algorithm.Lastly,the enhanced TOPSIS approach is used to determine the insulation quality of an oil-paper transformer.A verification example demonstrates that the evaluation model developed in this study can efficiently and accurately diagnose the insulation status of transformers.Essentially,this study presents a novel approach for the assessment of transformer oil-paper insulation.展开更多
基金This work was supported by the Anhui Provincial Natural Science Foundation(Grant No.2308085QB69)the Institute of Energy,Hefei Comprehensive National Science Center(Grant No.21KZS210).
文摘Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials.
基金Key Program of National Natural Science of China(Grant No.U1261205)SDUST Research Fund(No.2010KYTD101)
文摘This article analyzes the design and integrates application of a mine integrated automation system platform based on PON. At the beginning, the paper analyzes the basic principle and structure of PON. The set of integrated automation network platform according to the information transmission characteristics of mine based on access network and Ethernet of PON is designed. The paper descripes the platform in detail from aspacts of designs of system hardware, software and others. The results show that the system platform can improve the efficiency and reduce the cost.
文摘With the continuous development and progress of science and technology in China, automation technology has occupied an important position in many fields while its application in power system is increasingly widespread. Therefore, the application of electrical automation technology in power system is of great significance for power supply stability and work efficiency. In this paper, the author analyzes the application of electric automation technology in power system and makes contributions to the sustainable and stable development of power enterprises.
文摘The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.
基金supported by Shanghai Municipal Science and Technology Plan Project(No.22010502400)National Natural Science Foundation of China(Nos.82072228,92048205,and 62376149).
文摘The electroencephalogram(EEG)rhythm and functional near-infrared spectroscopy(fNIRS)activation levels have not been compared between a healthy control group(HCG)and methamphetamine user group(MUG)with different addiction histories.This study used 64-electrode EEG and fNIRS to conduct an experiment that analyzed the resting and craving states.The EEG and fNIRS data of 56 participants were collected,including 14 healthy participants,14 methamphetamine users with an addiction history of 0.5–5 years,14 users with an addiction history of 5–10 years,and 14 users with an addiction history of 10–15 years.Isolated effective coherence(iCoh)within the brain network was used to process the EEG data.Statistical analysis was performed to compare differences in iCoh among the delta,theta,alpha,beta,and gamma bands and explore oxyhemoglobin activation levels in the ventrolateral prefrontal cortex,dorsolateral prefrontal cortex,orbitofrontal cortex,and frontopolar prefrontal cortex(FPC)of the control group.Finally,the Kmeans,Gaussian mixed model(GMM),linear discriminant analysis(LDA),support vector machine(SVM),Bayes,and convolutional neural networks(CNN)algorithms were used to classify methamphetamine users based on drug and neutral images.A 3-class accuracy was achieved.Changes in EEG and fNIRS activation levels of HCG and MUG with varied addiction histories were demonstrated.
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
基金supported by the National Natural Science Foundation of China(project no.42375192),and the China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)+2 种基金supported by the National Natural Science Foundation of China(project no.42030608)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702by the Hungarian Academy of Sciences through the Sustainable Development and Technologies National Programme(FFT NP FTA)and the János Bolyai Research Scholarship.
文摘Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.
文摘Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under Grant 52140023000T.
文摘Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.
基金supported by the National Natural Science of Foundation of China(41825011,42030608,42105128,and 42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,the CMA and the CMA Research Center on Meteorological Observation Engineering Technology(U2021Z03).
文摘The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.
基金supported in part by the National Natural Science Foundation of China(61933007,U21A2019,U22A2044,61973102,62073180)the Natural Science Foundation of Shandong Province of China(ZR2021MF088)+1 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Royal Society of the UK,and the Alexander vonHumboldt Foundation of Germany。
文摘This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.
基金Project(52109132)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE270)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(JMDPC202204)supported by State Key Laboratory of Strata Intelligent Control,Green Mining Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and Technology,China。
文摘Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.
基金supported by the National Natural Science Foundation of China under Grants 61821004,62250056,62350710214,U23A20325,62350055the Natural Science Foundation of Shandong Province,China(ZR2021ZD14,ZR2021JQ24)+2 种基金High-level Talent Team Project of Qingdao West Coast New Area,China(RCTD-JC-2019-05)Key Research and Development Program of Shandong Province,China(2020CXGC01208)Science and Technology Project of Qingdao West Coast New Area,China(2019-32,2020-20,2020-1-4).
文摘This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.
文摘As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health management(PHM)domain,transfer learning provides a fundamental solution to enhance generalization of datadriven methods.In this paper,we briefly discuss general idea and advances of various transfer learning techniques in PHM domain,including domain adaptation,domain generalization,federated learning,and knowledge-driven transfer learning.Based on the observations from state of the art,we provide extensive discussions on possible challenges and opportunities of transfer learning in PHM domain to direct future development.
基金Supported by National Key R&D Projects(Grant No.2018YFB0905500)National Natural Science Foundation of China(Grant No.51875498)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant Nos.E2018203439,E2018203339,F2016203496)Key Scientific Research Projects Plan of Henan Higher Education Institutions(Grant No.19B460001)
文摘Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.
基金Projects(61227006,61473206) supported by the National Natural Science Foundation of ChinaProject(13TXSYJC40200) supported by Science and Technology Innovation of Tianjin,China
文摘Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
基金supported by the Natural Science Foundation of the Fujian Province(2021J01109).
文摘The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighting and an improved technique for order of preference by similarity to ideal solution(TOPSIS)method to perform an objective and scientific evaluation of the transformer oil-paper insulation state.Firstly,multiple aging features are extracted from the recovery voltage polarization spectrum and the extended Debye equivalent circuit owing to the limitations of using a single feature for evaluation.A standard evaluation index system is then established by using the collected time-domain dielectric spectrum data.Secondly,this study implements the per-unit value concept to integrate the dimension of the index matrix and calculates the objective weight by using the random forest algorithm.Furthermore,it combines the weighting model to overcome the drawbacks of the single weighting method by using the indicators and considering the subjective experience of experts and the random forest algorithm.Lastly,the enhanced TOPSIS approach is used to determine the insulation quality of an oil-paper transformer.A verification example demonstrates that the evaluation model developed in this study can efficiently and accurately diagnose the insulation status of transformers.Essentially,this study presents a novel approach for the assessment of transformer oil-paper insulation.