DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in...DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile indust...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile industrial applications.However,selectively reducing CO_(2)to ethylene is still challenging as the additional energy required for the C–C coupling step results in large overpotential and many competing products.Nonetheless,mechanistic understanding of the key steps and preferred reaction pathways/conditions,as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO_(2)RR.In this review,we first illustrate the key steps for CO_(2)RR to ethylene(e.g.,CO_(2)adsorption/activation,formation of~*CO intermediate,C–C coupling step),offering mechanistic understanding of CO_(2)RR conversion to ethylene.Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products(C_1 and other C_(2+)products)are investigated,guiding the further design and development of preferred conditions for ethylene generation.Engineering strategies of Cu-based catalysts for CO_(2)RR-ethylene are further summarized,and the correlations of reaction mechanism/pathways,engineering strategies and selectivity are elaborated.Finally,major challenges and perspectives in the research area of CO_(2)RR are proposed for future development and practical applications.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising altern...The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices.展开更多
Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]...Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.展开更多
In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polar...In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polarizer.To address this inefficiency and optimize energy utilization,this study presents a high-performance device designed for RGB polarized emissions.The device employs an array of semipolar blueμLEDs with inherent polarization capabilities,coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals.The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission,while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions,due to their high dielectric constant.The resulting device achieved RGB polarization degrees of 0.26,0.48,and 0.38,respectively,and exhibited a broad color gamut,reaching 137.2%of the NTSC standard and 102.5%of the Rec.2020 standard.When compared to a device utilizing c-plane LEDs for excitation,the current approach increased the intensity of light transmitted through the polarizer by 73.6%.This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies.展开更多
Current techniques of forest inventory rely on manual measurements and are slow and labor intensive.Recent developments in computer vision and depth sensing can produce accurate measurement data at significantly reduc...Current techniques of forest inventory rely on manual measurements and are slow and labor intensive.Recent developments in computer vision and depth sensing can produce accurate measurement data at significantly reduced time and labor costs.We developed the ForSense system to measure the diameters of trees at various points along the stem as well as stem straightness.Time use,mean absolute error(MAE),and root mean squared error(RMSE)metrics were used to compare the system against manual methods,and to compare the system against itself(reproducibility).Depth-derived diameter measurements of the stems at the heights of 0.3,1.4,and 2.7 m achieved RMSE of 1.7,1.5,and 2.7 cm,respectively.The ForSense system produced straightness measurement data that was highly correlated with straightness ratings by trained foresters.The ForSense system was also consistent,achieving sub-centimeter diameter difference with subsequent measures and less than 4%difference in straightness value between runs.This method of forest inventory,which is based on depth-image computer vision,is time efficient compared to manual methods and less computationally and technologically intensive compared to Structure-from-Motion(SFM)photogrammetry and ground-based LiDAR or terrestrial laser scanning(TLS).展开更多
The coronavirus(COVID-19)is a lethal virus causing a rapidly infec-tious disease throughout the globe.Spreading awareness,taking preventive mea-sures,imposing strict restrictions on public gatherings,wearing facial ma...The coronavirus(COVID-19)is a lethal virus causing a rapidly infec-tious disease throughout the globe.Spreading awareness,taking preventive mea-sures,imposing strict restrictions on public gatherings,wearing facial masks,and maintaining safe social distancing have become crucial factors in keeping the virus at bay.Even though the world has spent a whole year preventing and curing the disease caused by the COVID-19 virus,the statistics show that the virus can cause an outbreak at any time on a large scale if thorough preventive measures are not maintained accordingly.Tofight the spread of this virus,technologically developed systems have become very useful.However,the implementation of an automatic,robust,continuous,and lightweight monitoring system that can be efficiently deployed on an embedded device still has not become prevalent in the mass community.This paper aims to develop an automatic system to simul-taneously detect social distance and face mask violation in real-time that has been deployed in an embedded system.A modified version of a convolutional neural network,the ResNet50 model,has been utilized to identify masked faces in peo-ple.You Only Look Once(YOLOv3)approach is applied for object detection and the DeepSORT technique is used to measure the social distance.The efficiency of the proposed model is tested on real-time video sequences taken from a video streaming source from an embedded system,Jetson Nano edge computing device,and smartphones,Android and iOS applications.Empirical results show that the implemented model can efficiently detect facial masks and social distance viola-tions with acceptable accuracy and precision scores.展开更多
BACKGROUND Lymphovascular invasion(LVI)and perineural invasion(PNI)are important prognostic factors for gastric cancer(GC)that indicate an increased risk of metastasis and poor outcomes.Accurate preoperative predictio...BACKGROUND Lymphovascular invasion(LVI)and perineural invasion(PNI)are important prognostic factors for gastric cancer(GC)that indicate an increased risk of metastasis and poor outcomes.Accurate preoperative prediction of LVI/PNI status could help clinicians identify high-risk patients and guide treatment deci-sions.However,prior models using conventional computed tomography(CT)images to predict LVI or PNI separately have had limited accuracy.Spectral CT provides quantitative enhancement parameters that may better capture tumor invasion.We hypothesized that a predictive model combining clinical and spectral CT parameters would accurately preoperatively predict LVI/PNI status in GC patients.AIM To develop and test a machine learning model that fuses spectral CT parameters and clinical indicators to predict LVI/PNI status accurately.METHODS This study used a retrospective dataset involving 257 GC patients(training cohort,n=172;validation cohort,n=85).First,several clinical indicators,including serum tumor markers,CT-TN stages and CT-detected extramural vein invasion(CT-EMVI),were extracted,as were quantitative spectral CT parameters from the delineated tumor regions.Next,a two-step feature selection approach using correlation-based methods and information gain ranking inside a 10-fold cross-validation loop was utilized to select informative clinical and spectral CT parameters.A logistic regression(LR)-based nomogram model was subsequently constructed to predict LVI/PNI status,and its performance was evaluated using the area under the receiver operating characteristic curve(AUC).RESULTS In both the training and validation cohorts,CT T3-4 stage,CT-N positive status,and CT-EMVI positive status are more prevalent in the LVI/PNI-positive group and these differences are statistically significant(P<0.05).LR analysis of the training group showed preoperative CT-T stage,CT-EMVI,single-energy CT values of 70 keV of venous phase(VP-70 keV),and the ratio of standardized iodine concentration of equilibrium phase(EP-NIC)were independent influencing factors.The AUCs of VP-70 keV and EP-NIC were 0.888 and 0.824,respectively,which were slightly greater than those of CT-T and CT-EMVI(AUC=0.793,0.762).The nomogram combining CT-T stage,CT-EMVI,VP-70 keV and EP-NIC yielded AUCs of 0.918(0.866-0.954)and 0.874(0.784-0.936)in the training and validation cohorts,which are significantly higher than using each of single independent factors(P<0.05).CONCLUSION The study found that using portal venous and EP spectral CT parameters allows effective preoperative detection of LVI/PNI in GC,with accuracy boosted by integrating clinical markers.展开更多
Alzheimer’s disease (AD) is a brain disorder that eventually causes memory loss and the ability to perform simple cognitive functions;research efforts within pharmaceuticals and other medical treatments have minimal ...Alzheimer’s disease (AD) is a brain disorder that eventually causes memory loss and the ability to perform simple cognitive functions;research efforts within pharmaceuticals and other medical treatments have minimal impact on the disease. Our preliminary biological studies showed that Repeated Electromagnetic Field Stimulation (REFMS) applying an EM frequency of 64 MHz and a specific absorption rate (SAR) of 0.4 - 0.9 W/kg decrease the level of amyloid-β peptides (Aβ), which is the most likely etiology of AD. This study emphasizes uniform E/H field and SAR distribution with adequate penetration depth penetration through multiple human head layers driven with low input power for safety treatments. In this work, we performed numerical modeling and computer simulations of a portable Meander Line antenna (MLA) to achieve the required EMF parameters to treat AD. The MLA device features a low cost, small size, wide bandwidth, and the ability to integrate into a portable system. This study utilized a High-Frequency Simulation System (HFSS) in the design of the MLA with the desired characteristics suited for AD treatment in humans. The team designed a 24-turn antenna with a 60 cm length and 25 cm width and achieved the required resonant frequency of 64 MHz. Here we used two numerical human head phantoms to test the antenna, the MIDA and spherical head phantom with six and seven tissue layers, respectively. The antenna was fed from a 50-Watt input source to obtain the SAR of 0.6 W/kg requirement in the center of the simulated brain tissue layer. We found that the E/H field and SAR distribution produced was not homogeneous;there were areas of high SAR values close to the antenna transmitter, also areas of low SAR value far away from the antenna. This paper details the antenna parameters, the scattering parameters response, the efficiency response, and the E and H field distribution;we presented the computer simulation results and discussed future work for a practical model.展开更多
During the prodromal stage of Alzheimer’s disease (AD), neurodegenerative changes can be identified by measuring volumetric loss in AD-prone brain regions on MRI. Cognitive assessments that are sensitive enough to me...During the prodromal stage of Alzheimer’s disease (AD), neurodegenerative changes can be identified by measuring volumetric loss in AD-prone brain regions on MRI. Cognitive assessments that are sensitive enough to measure the early brain-behavior manifestations of AD and that correlate with biomarkers of neurodegeneration are needed to identify and monitor individuals at risk for dementia. Weak sensitivity to early cognitive change has been a major limitation of traditional cognitive assessments. In this study, we focused on expanding our previous work by determining whether a digitized cognitive stress test, the Loewenstein-Acevedo Scales for Semantic Interference and Learning, Brief Computerized Version (LASSI-BC) could differentiate between Cognitively Unimpaired (CU) and amnestic Mild Cognitive Impairment (aMCI) groups. A second focus was to correlate LASSI-BC performance to volumetric reductions in AD-prone brain regions. Data was gathered from 111 older adults who were comprehensively evaluated and administered the LASSI-BC. Eighty-seven of these participants (51 CU;36 aMCI) underwent MR imaging. The volumes of 12 AD-prone brain regions were related to LASSI-BC and other memory tests correcting for False Discovery Rate (FDR). Results indicated that, even after adjusting for initial learning ability, the failure to recover from proactive semantic interference (frPSI) on the LASSI-BC differentiated between CU and aMCI groups. An optimal combination of frPSI and initial learning strength on the LASSI-BC yielded an area under the ROC curve of 0.876 (76.1% sensitivity, 82.7% specificity). Further, frPSI on the LASSI-BC was associated with volumetric reductions in the hippocampus, amygdala, inferior temporal lobes, precuneus, and posterior cingulate.展开更多
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f...AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.展开更多
OpenAI and ChatGPT, as state-of-the-art languagemodels driven by cutting-edge artificial intelligence technology,have gained widespread adoption across diverse industries. In the realm of computer vision, these models...OpenAI and ChatGPT, as state-of-the-art languagemodels driven by cutting-edge artificial intelligence technology,have gained widespread adoption across diverse industries. In the realm of computer vision, these models havebeen employed for intricate tasks including object recognition, image generation, and image processing, leveragingtheir advanced capabilities to fuel transformative breakthroughs. Within the gaming industry, they have foundutility in crafting virtual characters and generating plots and dialogues, thereby enabling immersive and interactiveplayer experiences. Furthermore, these models have been harnessed in the realm of medical diagnosis, providinginvaluable insights and support to healthcare professionals in the realmof disease detection. The principal objectiveof this paper is to offer a comprehensive overview of OpenAI, OpenAI Gym, ChatGPT, DALL E, stable diffusion,the pre-trained clip model, and other pertinent models in various domains, encompassing CLIP Text-to-Image,education, medical imaging, computer vision, social influence, natural language processing, software development,coding assistance, and Chatbot, among others. Particular emphasis will be placed on comparative analysis andexamination of popular text-to-image and text-to-video models under diverse stimuli, shedding light on thecurrent research landscape, emerging trends, and existing challenges within the domains of OpenAI and ChatGPT.Through a rigorous literature review, this paper aims to deliver a professional and insightful overview of theadvancements, potentials, and limitations of these pioneering language models.展开更多
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng...The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.展开更多
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practi...The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practical interest.However,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this term.The purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing industry.Notably,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.展开更多
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver ra...Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.展开更多
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and adv...The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced robotics.Leveraging 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption.Here,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia detection.With experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,respectively.The optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios.Moreover,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision application.To display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory functions.The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.展开更多
Unmanned Aerial Vehicles(UAvs)as aerial base stations to provide communication services for ground users is a flexible and cost-effective paradigm in B5G.Besides,dynamic resource allocation and multi-connectivity can ...Unmanned Aerial Vehicles(UAvs)as aerial base stations to provide communication services for ground users is a flexible and cost-effective paradigm in B5G.Besides,dynamic resource allocation and multi-connectivity can be adopted to further harness the potentials of UAVs in improving communication capacity,in such situations such that the interference among users becomes a pivotal disincentive requiring effective solutions.To this end,we investigate the Joint UAV-User Association,Channel Allocation,and transmission Power Control(J-UACAPC)problem in a multi-connectivity-enabled UAV network with constrained backhaul links,where each UAV can determine the reusable channels and transmission power to serve the selected ground users.The goal was to mitigate co-channel interference while maximizing long-term system utility.The problem was modeled as a cooperative stochastic game with hybrid discrete-continuous action space.A Multi-Agent Hybrid Deep Reinforcement Learning(MAHDRL)algorithm was proposed to address this problem.Extensive simulation results demonstrated the effectiveness of the proposed algorithm and showed that it has a higher system utility than the baseline methods.展开更多
One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw...One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
基金the National Natural Science Foundation of China(62271485,61903363,U1811463,62103411,62203250)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1)。
文摘DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.
基金financially supported via Australian Research Council(FT180100705)the support by the National Natural Science Foundation of China(22209103)+3 种基金the support from UTS Chancellor's Research Fellowshipsthe support from Open Project of State Key Laboratory of Advanced Special Steel,the Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-**)Joint International Laboratory on Environmental and Energy Frontier MaterialsInnovation Research Team of High-Level Local Universities in Shanghai。
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile industrial applications.However,selectively reducing CO_(2)to ethylene is still challenging as the additional energy required for the C–C coupling step results in large overpotential and many competing products.Nonetheless,mechanistic understanding of the key steps and preferred reaction pathways/conditions,as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO_(2)RR.In this review,we first illustrate the key steps for CO_(2)RR to ethylene(e.g.,CO_(2)adsorption/activation,formation of~*CO intermediate,C–C coupling step),offering mechanistic understanding of CO_(2)RR conversion to ethylene.Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products(C_1 and other C_(2+)products)are investigated,guiding the further design and development of preferred conditions for ethylene generation.Engineering strategies of Cu-based catalysts for CO_(2)RR-ethylene are further summarized,and the correlations of reaction mechanism/pathways,engineering strategies and selectivity are elaborated.Finally,major challenges and perspectives in the research area of CO_(2)RR are proposed for future development and practical applications.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金This work was supported by the National Research Foundation,Singapore under Award No.NRF-CRP24-2020-0002.
文摘The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices.
文摘Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.
基金the National Natural Science Foundation of China(62274138)Natural Science Foundation of Fujian Province of China(2023J06012)+2 种基金Science and Technology Plan Project in Fujian Province of China(2021H0011)Fundamental Research Funds for the Central Universities(20720230029)Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone(3502ZCQXT2022005).
文摘In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polarizer.To address this inefficiency and optimize energy utilization,this study presents a high-performance device designed for RGB polarized emissions.The device employs an array of semipolar blueμLEDs with inherent polarization capabilities,coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals.The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission,while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions,due to their high dielectric constant.The resulting device achieved RGB polarization degrees of 0.26,0.48,and 0.38,respectively,and exhibited a broad color gamut,reaching 137.2%of the NTSC standard and 102.5%of the Rec.2020 standard.When compared to a device utilizing c-plane LEDs for excitation,the current approach increased the intensity of light transmitted through the polarizer by 73.6%.This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies.
基金funded in part by the United States Department of Agriculture Forest Service,Northern Research Station,USDA Hardwood Tree Improvement and Regeneration CenterUSDA National Institute of Food and Agriculture McIntire Stennis project (IND011523MS)。
文摘Current techniques of forest inventory rely on manual measurements and are slow and labor intensive.Recent developments in computer vision and depth sensing can produce accurate measurement data at significantly reduced time and labor costs.We developed the ForSense system to measure the diameters of trees at various points along the stem as well as stem straightness.Time use,mean absolute error(MAE),and root mean squared error(RMSE)metrics were used to compare the system against manual methods,and to compare the system against itself(reproducibility).Depth-derived diameter measurements of the stems at the heights of 0.3,1.4,and 2.7 m achieved RMSE of 1.7,1.5,and 2.7 cm,respectively.The ForSense system produced straightness measurement data that was highly correlated with straightness ratings by trained foresters.The ForSense system was also consistent,achieving sub-centimeter diameter difference with subsequent measures and less than 4%difference in straightness value between runs.This method of forest inventory,which is based on depth-image computer vision,is time efficient compared to manual methods and less computationally and technologically intensive compared to Structure-from-Motion(SFM)photogrammetry and ground-based LiDAR or terrestrial laser scanning(TLS).
文摘The coronavirus(COVID-19)is a lethal virus causing a rapidly infec-tious disease throughout the globe.Spreading awareness,taking preventive mea-sures,imposing strict restrictions on public gatherings,wearing facial masks,and maintaining safe social distancing have become crucial factors in keeping the virus at bay.Even though the world has spent a whole year preventing and curing the disease caused by the COVID-19 virus,the statistics show that the virus can cause an outbreak at any time on a large scale if thorough preventive measures are not maintained accordingly.Tofight the spread of this virus,technologically developed systems have become very useful.However,the implementation of an automatic,robust,continuous,and lightweight monitoring system that can be efficiently deployed on an embedded device still has not become prevalent in the mass community.This paper aims to develop an automatic system to simul-taneously detect social distance and face mask violation in real-time that has been deployed in an embedded system.A modified version of a convolutional neural network,the ResNet50 model,has been utilized to identify masked faces in peo-ple.You Only Look Once(YOLOv3)approach is applied for object detection and the DeepSORT technique is used to measure the social distance.The efficiency of the proposed model is tested on real-time video sequences taken from a video streaming source from an embedded system,Jetson Nano edge computing device,and smartphones,Android and iOS applications.Empirical results show that the implemented model can efficiently detect facial masks and social distance viola-tions with acceptable accuracy and precision scores.
基金Supported by Science and Technology Project of Fujian Province,No.2022Y0025.
文摘BACKGROUND Lymphovascular invasion(LVI)and perineural invasion(PNI)are important prognostic factors for gastric cancer(GC)that indicate an increased risk of metastasis and poor outcomes.Accurate preoperative prediction of LVI/PNI status could help clinicians identify high-risk patients and guide treatment deci-sions.However,prior models using conventional computed tomography(CT)images to predict LVI or PNI separately have had limited accuracy.Spectral CT provides quantitative enhancement parameters that may better capture tumor invasion.We hypothesized that a predictive model combining clinical and spectral CT parameters would accurately preoperatively predict LVI/PNI status in GC patients.AIM To develop and test a machine learning model that fuses spectral CT parameters and clinical indicators to predict LVI/PNI status accurately.METHODS This study used a retrospective dataset involving 257 GC patients(training cohort,n=172;validation cohort,n=85).First,several clinical indicators,including serum tumor markers,CT-TN stages and CT-detected extramural vein invasion(CT-EMVI),were extracted,as were quantitative spectral CT parameters from the delineated tumor regions.Next,a two-step feature selection approach using correlation-based methods and information gain ranking inside a 10-fold cross-validation loop was utilized to select informative clinical and spectral CT parameters.A logistic regression(LR)-based nomogram model was subsequently constructed to predict LVI/PNI status,and its performance was evaluated using the area under the receiver operating characteristic curve(AUC).RESULTS In both the training and validation cohorts,CT T3-4 stage,CT-N positive status,and CT-EMVI positive status are more prevalent in the LVI/PNI-positive group and these differences are statistically significant(P<0.05).LR analysis of the training group showed preoperative CT-T stage,CT-EMVI,single-energy CT values of 70 keV of venous phase(VP-70 keV),and the ratio of standardized iodine concentration of equilibrium phase(EP-NIC)were independent influencing factors.The AUCs of VP-70 keV and EP-NIC were 0.888 and 0.824,respectively,which were slightly greater than those of CT-T and CT-EMVI(AUC=0.793,0.762).The nomogram combining CT-T stage,CT-EMVI,VP-70 keV and EP-NIC yielded AUCs of 0.918(0.866-0.954)and 0.874(0.784-0.936)in the training and validation cohorts,which are significantly higher than using each of single independent factors(P<0.05).CONCLUSION The study found that using portal venous and EP spectral CT parameters allows effective preoperative detection of LVI/PNI in GC,with accuracy boosted by integrating clinical markers.
文摘Alzheimer’s disease (AD) is a brain disorder that eventually causes memory loss and the ability to perform simple cognitive functions;research efforts within pharmaceuticals and other medical treatments have minimal impact on the disease. Our preliminary biological studies showed that Repeated Electromagnetic Field Stimulation (REFMS) applying an EM frequency of 64 MHz and a specific absorption rate (SAR) of 0.4 - 0.9 W/kg decrease the level of amyloid-β peptides (Aβ), which is the most likely etiology of AD. This study emphasizes uniform E/H field and SAR distribution with adequate penetration depth penetration through multiple human head layers driven with low input power for safety treatments. In this work, we performed numerical modeling and computer simulations of a portable Meander Line antenna (MLA) to achieve the required EMF parameters to treat AD. The MLA device features a low cost, small size, wide bandwidth, and the ability to integrate into a portable system. This study utilized a High-Frequency Simulation System (HFSS) in the design of the MLA with the desired characteristics suited for AD treatment in humans. The team designed a 24-turn antenna with a 60 cm length and 25 cm width and achieved the required resonant frequency of 64 MHz. Here we used two numerical human head phantoms to test the antenna, the MIDA and spherical head phantom with six and seven tissue layers, respectively. The antenna was fed from a 50-Watt input source to obtain the SAR of 0.6 W/kg requirement in the center of the simulated brain tissue layer. We found that the E/H field and SAR distribution produced was not homogeneous;there were areas of high SAR values close to the antenna transmitter, also areas of low SAR value far away from the antenna. This paper details the antenna parameters, the scattering parameters response, the efficiency response, and the E and H field distribution;we presented the computer simulation results and discussed future work for a practical model.
文摘During the prodromal stage of Alzheimer’s disease (AD), neurodegenerative changes can be identified by measuring volumetric loss in AD-prone brain regions on MRI. Cognitive assessments that are sensitive enough to measure the early brain-behavior manifestations of AD and that correlate with biomarkers of neurodegeneration are needed to identify and monitor individuals at risk for dementia. Weak sensitivity to early cognitive change has been a major limitation of traditional cognitive assessments. In this study, we focused on expanding our previous work by determining whether a digitized cognitive stress test, the Loewenstein-Acevedo Scales for Semantic Interference and Learning, Brief Computerized Version (LASSI-BC) could differentiate between Cognitively Unimpaired (CU) and amnestic Mild Cognitive Impairment (aMCI) groups. A second focus was to correlate LASSI-BC performance to volumetric reductions in AD-prone brain regions. Data was gathered from 111 older adults who were comprehensively evaluated and administered the LASSI-BC. Eighty-seven of these participants (51 CU;36 aMCI) underwent MR imaging. The volumes of 12 AD-prone brain regions were related to LASSI-BC and other memory tests correcting for False Discovery Rate (FDR). Results indicated that, even after adjusting for initial learning ability, the failure to recover from proactive semantic interference (frPSI) on the LASSI-BC differentiated between CU and aMCI groups. An optimal combination of frPSI and initial learning strength on the LASSI-BC yielded an area under the ROC curve of 0.876 (76.1% sensitivity, 82.7% specificity). Further, frPSI on the LASSI-BC was associated with volumetric reductions in the hippocampus, amygdala, inferior temporal lobes, precuneus, and posterior cingulate.
基金supported in part by the Hong Kong Polytechnic University via the project P0038447The Science and Technology Development Fund,Macao SAR(0093/2023/RIA2)The Science and Technology Development Fund,Macao SAR(0145/2023/RIA3).
文摘AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.
基金the National Natural Science Foundation of China(No.62001197).
文摘OpenAI and ChatGPT, as state-of-the-art languagemodels driven by cutting-edge artificial intelligence technology,have gained widespread adoption across diverse industries. In the realm of computer vision, these models havebeen employed for intricate tasks including object recognition, image generation, and image processing, leveragingtheir advanced capabilities to fuel transformative breakthroughs. Within the gaming industry, they have foundutility in crafting virtual characters and generating plots and dialogues, thereby enabling immersive and interactiveplayer experiences. Furthermore, these models have been harnessed in the realm of medical diagnosis, providinginvaluable insights and support to healthcare professionals in the realmof disease detection. The principal objectiveof this paper is to offer a comprehensive overview of OpenAI, OpenAI Gym, ChatGPT, DALL E, stable diffusion,the pre-trained clip model, and other pertinent models in various domains, encompassing CLIP Text-to-Image,education, medical imaging, computer vision, social influence, natural language processing, software development,coding assistance, and Chatbot, among others. Particular emphasis will be placed on comparative analysis andexamination of popular text-to-image and text-to-video models under diverse stimuli, shedding light on thecurrent research landscape, emerging trends, and existing challenges within the domains of OpenAI and ChatGPT.Through a rigorous literature review, this paper aims to deliver a professional and insightful overview of theadvancements, potentials, and limitations of these pioneering language models.
基金Department of Navy Awards N00014-22-1-2001 and N00014-23-1-2124 issued by the Office of Naval Research。
文摘The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.
基金This research is supported by National Natural Science Foundation of China(No.61902158).
文摘The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practical interest.However,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this term.The purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing industry.Notably,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.
文摘Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
基金financial support by the Semiconductor Initiative at the King Abdullah University of Science and Technologysupported by King Abdullah University of Science and Technology(KAUST)Research Funding(KRF)under Award No.ORA-2022-5314.
文摘The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced robotics.Leveraging 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption.Here,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia detection.With experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,respectively.The optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios.Moreover,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision application.To display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory functions.The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.
基金supported in part by the National Natural Science Foundation of China(grant nos.61971365,61871339,62171392)Digital Fujian Province Key Laboratory of IoT Communication,Architecture and Safety Technology(grant no.2010499)+1 种基金the State Key Program of the National Natural Science Foundation of China(grant no.61731012)the Natural Science Foundation of Fujian Province of China No.2021J01004.
文摘Unmanned Aerial Vehicles(UAvs)as aerial base stations to provide communication services for ground users is a flexible and cost-effective paradigm in B5G.Besides,dynamic resource allocation and multi-connectivity can be adopted to further harness the potentials of UAVs in improving communication capacity,in such situations such that the interference among users becomes a pivotal disincentive requiring effective solutions.To this end,we investigate the Joint UAV-User Association,Channel Allocation,and transmission Power Control(J-UACAPC)problem in a multi-connectivity-enabled UAV network with constrained backhaul links,where each UAV can determine the reusable channels and transmission power to serve the selected ground users.The goal was to mitigate co-channel interference while maximizing long-term system utility.The problem was modeled as a cooperative stochastic game with hybrid discrete-continuous action space.A Multi-Agent Hybrid Deep Reinforcement Learning(MAHDRL)algorithm was proposed to address this problem.Extensive simulation results demonstrated the effectiveness of the proposed algorithm and showed that it has a higher system utility than the baseline methods.
文摘One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.