Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing t...Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing the performance of AZIBs,but challenges persist.Vanadium-based oxides,known for their large interlayer spacing,are promising cathode materials.In this report,we synthesize Mg^(2+)-intercalated potassium vanadate(KVO)(MgKVO)via a single-step hydrothermal method and achieve a 12.2°Ainterlayer spacing.Mg^(2+) intercalation enhances the KVO performance,providing wide channels for Zn^(2+),which results in high capacity and ion diffusion.The combined action of K^(+) and Mg^(2+) intercalation enhances the electrical conductivity of MgKVO.This structural design endows MgKVO with excellent electrochemical performance.The AZIB with the MgKVO cathode delivers a high capacity of 457 mAh g^(-1) at 0.5 A g^(-1),excellent rate performance of 298 mAh g^(-1) at 5 A g^(-1),and outstanding cycling stability of 102%over 1300 cycles at 3 A g^(-1).Additionally,pseudocapacitance analysis reveals the high capacitance contribution and Zn^(2+)diffusion coefficient of MgKVO.Notably,ex-situ X-ray diffraction,X-ray photoelectron spectroscopy,and Raman analyses further demonstrate the Zn^(2+)insertion/extraction and Zn-ion storage mechanisms that occurred during cycling in the battery system.This study provides new insights into the intercalation of dual cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity AZIBs.展开更多
Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the te...Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs.展开更多
The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristic...The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristics of multiple projectiles are high randomness and large numbers launched in a short period of time,making it very difficult to obtain the real dispersion parameters of the projectiles due to the occlusion or coincidence of multiple projectiles.Using six intersecting-screen testing system,in this paper,we propose an association recognition and matching algorithm of multiple projectiles using a temporal and spatial information constraint mechanism.We extract the output signal from each detection screen and then use the wavelet transform to process the output signal.We present a method to identify and extract the time values on which the projectiles pass through the detection screens using the wavelet transform modulus maximum theory.We then use the correlation of the output signals of three parallel detection screens to establish a correlation coefficient recognition constraint function for the multiple projectiles.Based on the premise of linear projectile motion,we establish a temporal and spatial constraint matching model using the projectile’s position coordinates in each detection screen and the projectile’s time constraints within the multiple intersecting-screen geometry.We then determine the time values of the multiple projectiles in each detection screen using an iterative search cycle registration,and finally obtain the flight parameters for the multiple projectiles in the presence of uncertainty.The proposed method and algorithm were verified experimentally and can solve the problem of uncertainty in projectiles flight parameter under different multiple projectile firing states.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for t...Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.展开更多
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte...The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices....With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.展开更多
Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are li...Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are limited by the toxicity issue of lead(Pb).Among all the lead-free perovskites,tin(Sn)-based perovskites have shown potential due to their low toxicity,ideal bandgap structure,high carrier mobility,and long hot carrier lifetime.Great progress of Sn-based PSCs has been realized in recent years,and the certified efficiency has now reached over 14%.Nevertheless,this record still falls far behind the theoretical calculations.This is likely due to the uncontrolled nucleation states and pronounced Sn(Ⅳ)vacancies.With insights into the methodologies resolving both issues,ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs.Herein,we summarize the role of ligand engineering during each state of film fabrication,ranging from the starting precursors to the ending fabricated bulks.The incorporation of ligands to suppress Sn~(2+)oxidation,passivate bulk defects,optimize crystal orientation,and improve stability is discussed,respectively.Finally,the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented.We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.展开更多
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im...The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.展开更多
Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution(LTE)-Advanced and 5G New Radio(NR)mobile networks.However,these techniques introduce Passive Inter-Modulation(P...Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution(LTE)-Advanced and 5G New Radio(NR)mobile networks.However,these techniques introduce Passive Inter-Modulation(PIM)interference in Frequency-Division Duplexing(FDD)systems.In this paper,a novel multi-band Wiener-Hammerstein model is presented to digitally reconstruct PIM interference signals,thereby achieving effective PIM Cancellation(PIMC)in multi-band scenarios.In the model,transmitted signals are independently processed to simulate Inter-Modulation Distortions(IMDs)and Cross-Modulation Distortions(CMDs).Furthermore,the Finite Impulse Response(FIR)filter,basis function generation,and B-spline function are applied for precise PIM product estimation and generation in multi-band scenarios.Simulations involving 4 carrier components from diverse NR frequency bands at varying transmitting powers validate the feasibility of the model for multi-band PIMC,achieving up to 19 dB in PIMC performance.Compared to other models,this approach offers superior PIMC performance,exceeding them by more than 5 dB in high transmitting power scenarios.Additionally,its lower sampling rate requirement reduces the hardware complexity associated with implementing multi-band PIMC.展开更多
Non-uniform linear array(NULA)configurations are well renowned due to their structural ability for providing increased degrees of freedom(DOF)and wider array aperture than uniform linear arrays(ULAs).These characteris...Non-uniform linear array(NULA)configurations are well renowned due to their structural ability for providing increased degrees of freedom(DOF)and wider array aperture than uniform linear arrays(ULAs).These characteristics play a significant role in improving the direction-of-arrival(DOA)estimation accuracy.However,most of the existing NULA geometries are primarily applicable to circular sources(CSs),while they limitedly improve the DOF and continuous virtual aperture for noncircular sources(NCSs).Toward this purpose,we present a triaddisplaced ULAs(Tdis-ULAs)configuration for NCS.The TdisULAs structure generally consists of three ULAs,which are appropriately placed.The proposed antenna array approach fully exploits the non-circular characteristics of the sources.Given the same number of elements,the Tdis-ULAs design achieves more DOF and larger hole-free co-array aperture than its sparse array competitors.Advantageously,the number of uniform DOF,optimal distribution of elements among the ULAs,and precise element positions are uniquely determined by the closed-form expressions.Moreover,the proposed array also produces a filled resulting co-array.Numerical simulations are conducted to show the performance advantages of the proposed Tdis-ULAs configuration over its counterpart designs.展开更多
Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of ci...Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.展开更多
Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning mas...Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in im...Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multiagent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and relationship information between agents from the system state as observations,outputs task offloading decision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80%improvement compared with the benchmark algorithms in system service utility.展开更多
Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discon...Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.展开更多
We theoretically study nonlinear thermoelectric transport through a topological superconductor nanowire hosting Majorana bound states(MBSs) at its two ends, a system named as Majorana nanowire(MNW). We consider that t...We theoretically study nonlinear thermoelectric transport through a topological superconductor nanowire hosting Majorana bound states(MBSs) at its two ends, a system named as Majorana nanowire(MNW). We consider that the MNW is coupled to the left and right normal metallic leads subjected to either bias voltage or temperature gradient. We focus our attention on the sign change of nonlinear Seebeck and Peltier coefficients induced by mechanisms related to the MBSs, by which the possible existence of MBSs might be proved. Our results show that for a fixed temperature difference between the two leads, the sign of the nonlinear Seebeck coefficient(thermopower) can be reversed by changing the overlap amplitude between the MBSs or the system equilibrium temperature, which are similar to the cases in linear response regime. By optimizing the MBS–MBS interaction amplitude and system equilibrium temperature, we find that the temperature difference may also induce sign change of the nonlinear thermopower. For zero temperature difference and finite bias voltage, both the sign and magnitude of nonlinear Peltier coefficient can be adjusted by changing the bias voltage or overlap amplitude between the MBSs. In the presence of both bias voltage and temperature difference, we show that the electrical current at zero Fermi level and the states induced by overlap between the MBSs keep unchanged, regardless of the amplitude of temperature difference. We also find that the direction of the heat current driven by bias voltage may be changed by weak temperature difference.展开更多
This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmi...This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmitted to the estimator through the networks, which increases the burden of communication bandwidth. A dynamic event-triggered mechanism,instead of a static event-triggered mechanism, is employed to select useful data. By constructing a meaningful Lyapunov–Krasovskii functional, a delay-dependent criterion is derived in terms of linear matrix inequalities for ensuring the global asymptotic stability of the augmented system. In the end, two numerical simulations are employed to illustrate the feasibility and validity of the proposed theoretical results.展开更多
In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clini...In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant sponsored by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing the performance of AZIBs,but challenges persist.Vanadium-based oxides,known for their large interlayer spacing,are promising cathode materials.In this report,we synthesize Mg^(2+)-intercalated potassium vanadate(KVO)(MgKVO)via a single-step hydrothermal method and achieve a 12.2°Ainterlayer spacing.Mg^(2+) intercalation enhances the KVO performance,providing wide channels for Zn^(2+),which results in high capacity and ion diffusion.The combined action of K^(+) and Mg^(2+) intercalation enhances the electrical conductivity of MgKVO.This structural design endows MgKVO with excellent electrochemical performance.The AZIB with the MgKVO cathode delivers a high capacity of 457 mAh g^(-1) at 0.5 A g^(-1),excellent rate performance of 298 mAh g^(-1) at 5 A g^(-1),and outstanding cycling stability of 102%over 1300 cycles at 3 A g^(-1).Additionally,pseudocapacitance analysis reveals the high capacitance contribution and Zn^(2+)diffusion coefficient of MgKVO.Notably,ex-situ X-ray diffraction,X-ray photoelectron spectroscopy,and Raman analyses further demonstrate the Zn^(2+)insertion/extraction and Zn-ion storage mechanisms that occurred during cycling in the battery system.This study provides new insights into the intercalation of dual cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity AZIBs.
基金supported in part by the National Natural Science Foundation of China under Grant 62171187the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515011476+1 种基金the Science and Technology Program of Guangzhou under Grant 201904010373the Key Program of Marine Economy Development (Six Marine Industries) Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020]009)。
文摘Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs.
基金been supported by Project of the National Natural Science Foundation of China(No.62073256)the Shaanxi Provincial Science and Technology Department(No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project(No.2020KJRC0041)。
文摘The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristics of multiple projectiles are high randomness and large numbers launched in a short period of time,making it very difficult to obtain the real dispersion parameters of the projectiles due to the occlusion or coincidence of multiple projectiles.Using six intersecting-screen testing system,in this paper,we propose an association recognition and matching algorithm of multiple projectiles using a temporal and spatial information constraint mechanism.We extract the output signal from each detection screen and then use the wavelet transform to process the output signal.We present a method to identify and extract the time values on which the projectiles pass through the detection screens using the wavelet transform modulus maximum theory.We then use the correlation of the output signals of three parallel detection screens to establish a correlation coefficient recognition constraint function for the multiple projectiles.Based on the premise of linear projectile motion,we establish a temporal and spatial constraint matching model using the projectile’s position coordinates in each detection screen and the projectile’s time constraints within the multiple intersecting-screen geometry.We then determine the time values of the multiple projectiles in each detection screen using an iterative search cycle registration,and finally obtain the flight parameters for the multiple projectiles in the presence of uncertainty.The proposed method and algorithm were verified experimentally and can solve the problem of uncertainty in projectiles flight parameter under different multiple projectile firing states.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200sponsored by Tsinghua-Toyota Joint Research Fund+12 种基金in part by National Natural Science Foundation of China under Grant 62374099, Grant 62022047, Grant U20A20168, Grant 51861145202, Grant 51821003, and Grant 62175219in part by the National Key R&D Program under Grant 2016YFA0200400in part by Beijing Natural Science-Xiaomi Innovation Joint Fund Grant L233009in part supported by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT KF202204)in part by the Daikin-Tsinghua Union Programin part sponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Programin part by the Guoqiang Institute, Tsinghua Universityin part by the Research Fund from Beijing Innovation Center for Future Chipin part by Shanxi “1331 Project” Key Subjects Constructionin part by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019120)the opening fund of Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciencesin part by the project of MOE Innovation Platformin part by the State Key Laboratory of Integrated Chips and Systems
文摘Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.
基金The Fundamental Research Funds for the Central Universities,HUST,Grant/Award Number:2021GCRC046The Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2022005Natural Science Foundation of Hubei Province,China,Grant/Award Number:2022CFA031。
文摘The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
基金R.Ma thanks the support from PolyU Distinguished Postdoc Fellowship(1-YW4C)Z.Luo thanks the National Natural Science Foundation of China(NSFC,No.22309119)+7 种基金J.Wu thanks the Guangdong government and the Guangzhou government for funding(2021QN02C110)the Guangzhou Municipal Science and Technology Project(No.2023A03J0097 and 2023A03J0003)H.Yan appreciates the support from the National Key Research and Development Program of China(No.2019YFA0705900)funded by MOST,the Basic and Applied Research Major Program of Guangdong Province(No.2019B030302007)the Shen Zhen Technology and Innovation Commission through(Shenzhen Fundamental Research Program,JCYJ20200109140801751)the Hong Kong Research Grants Council(research fellow scheme RFS2021-6S05,RIF project R6021-18,CRF project C6023‐19G,GRF project 16310019,16310020,16309221,and 16309822)Hong Kong Innovation and Technology Commission(ITC‐CNERC14SC01)Foshan‐HKUST(Project NO.FSUST19‐CAT0202)Zhongshan Municipal Bureau of Science and Technology(NO.ZSST20SC02)and Tencent Xplorer Prize。
文摘With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.
基金supported by the National Natural Science Foundation of China(61935016,62275213 and 62205264),the National Natural Science Foundation of China(21961160720)the Fundamental Research Funds for Xi'an Jiaotong University(xzy012022092,xzd012022003 and xzy022022057)+1 种基金the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)。
文摘Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are limited by the toxicity issue of lead(Pb).Among all the lead-free perovskites,tin(Sn)-based perovskites have shown potential due to their low toxicity,ideal bandgap structure,high carrier mobility,and long hot carrier lifetime.Great progress of Sn-based PSCs has been realized in recent years,and the certified efficiency has now reached over 14%.Nevertheless,this record still falls far behind the theoretical calculations.This is likely due to the uncontrolled nucleation states and pronounced Sn(Ⅳ)vacancies.With insights into the methodologies resolving both issues,ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs.Herein,we summarize the role of ligand engineering during each state of film fabrication,ranging from the starting precursors to the ending fabricated bulks.The incorporation of ligands to suppress Sn~(2+)oxidation,passivate bulk defects,optimize crystal orientation,and improve stability is discussed,respectively.Finally,the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented.We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.
基金supported by the National Research Foundation of Korea Grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.
基金supported by the National Natural Science Foun-dation of China under Grant 11901209,Grant 62374061,and Grant 62271217.
文摘Utilizing multi-band and multi-carrier techniques enhances throughput and capacity in Long-Term Evolution(LTE)-Advanced and 5G New Radio(NR)mobile networks.However,these techniques introduce Passive Inter-Modulation(PIM)interference in Frequency-Division Duplexing(FDD)systems.In this paper,a novel multi-band Wiener-Hammerstein model is presented to digitally reconstruct PIM interference signals,thereby achieving effective PIM Cancellation(PIMC)in multi-band scenarios.In the model,transmitted signals are independently processed to simulate Inter-Modulation Distortions(IMDs)and Cross-Modulation Distortions(CMDs).Furthermore,the Finite Impulse Response(FIR)filter,basis function generation,and B-spline function are applied for precise PIM product estimation and generation in multi-band scenarios.Simulations involving 4 carrier components from diverse NR frequency bands at varying transmitting powers validate the feasibility of the model for multi-band PIMC,achieving up to 19 dB in PIMC performance.Compared to other models,this approach offers superior PIMC performance,exceeding them by more than 5 dB in high transmitting power scenarios.Additionally,its lower sampling rate requirement reduces the hardware complexity associated with implementing multi-band PIMC.
基金supported by the National Natural Science Foundation of China(62031017,61971221)the Fundamental Research Funds for the Central Universities of China(NP2020104)。
文摘Non-uniform linear array(NULA)configurations are well renowned due to their structural ability for providing increased degrees of freedom(DOF)and wider array aperture than uniform linear arrays(ULAs).These characteristics play a significant role in improving the direction-of-arrival(DOA)estimation accuracy.However,most of the existing NULA geometries are primarily applicable to circular sources(CSs),while they limitedly improve the DOF and continuous virtual aperture for noncircular sources(NCSs).Toward this purpose,we present a triaddisplaced ULAs(Tdis-ULAs)configuration for NCS.The TdisULAs structure generally consists of three ULAs,which are appropriately placed.The proposed antenna array approach fully exploits the non-circular characteristics of the sources.Given the same number of elements,the Tdis-ULAs design achieves more DOF and larger hole-free co-array aperture than its sparse array competitors.Advantageously,the number of uniform DOF,optimal distribution of elements among the ULAs,and precise element positions are uniquely determined by the closed-form expressions.Moreover,the proposed array also produces a filled resulting co-array.Numerical simulations are conducted to show the performance advantages of the proposed Tdis-ULAs configuration over its counterpart designs.
基金supported by National Natural Science Foundation of China (Grant No. 62073256)the Shaanxi Provincial Science and Technology Department (Grant No. 2023-YBGY-342)。
文摘Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.
基金supported in part by National Natural Science Foundation of China under Grant 62371262 and 61971467in part by the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1+1 种基金in part by the Qinlan Project of Jiangsu Provincein part by the Scientific Research Program of Nantong under Grant JC22022026
文摘Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
基金supported by the Talent Fund of Beijing Jiaotong University(No.2023XKRC028)CCFLenovo Blue Ocean Research Fund and Beijing Natural Science Foundation under Grant(No.L221003).
文摘Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multiagent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and relationship information between agents from the system state as observations,outputs task offloading decision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80%improvement compared with the benchmark algorithms in system service utility.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB 2900304the Shenzhen Science and Technology Program under Grants KQTD20190929172545139 and ZDSYS20210623091808025.
文摘Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.
基金Project supported by the National Natural Science Foundation of China(Grant No.12264037)the Innovation Team of Colleges and Universities in Guangdong Province(Grant No.2021KCXTD040)+2 种基金Guangdong Province Education Department(Grant No.2023KTSCX174)the Key Laboratory of Guangdong Higher Education Institutes(Grant No.2023KSYS011)Science and Technology Bureau of Zhongshan(Grant No.2023B2035)。
文摘We theoretically study nonlinear thermoelectric transport through a topological superconductor nanowire hosting Majorana bound states(MBSs) at its two ends, a system named as Majorana nanowire(MNW). We consider that the MNW is coupled to the left and right normal metallic leads subjected to either bias voltage or temperature gradient. We focus our attention on the sign change of nonlinear Seebeck and Peltier coefficients induced by mechanisms related to the MBSs, by which the possible existence of MBSs might be proved. Our results show that for a fixed temperature difference between the two leads, the sign of the nonlinear Seebeck coefficient(thermopower) can be reversed by changing the overlap amplitude between the MBSs or the system equilibrium temperature, which are similar to the cases in linear response regime. By optimizing the MBS–MBS interaction amplitude and system equilibrium temperature, we find that the temperature difference may also induce sign change of the nonlinear thermopower. For zero temperature difference and finite bias voltage, both the sign and magnitude of nonlinear Peltier coefficient can be adjusted by changing the bias voltage or overlap amplitude between the MBSs. In the presence of both bias voltage and temperature difference, we show that the electrical current at zero Fermi level and the states induced by overlap between the MBSs keep unchanged, regardless of the amplitude of temperature difference. We also find that the direction of the heat current driven by bias voltage may be changed by weak temperature difference.
文摘This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmitted to the estimator through the networks, which increases the burden of communication bandwidth. A dynamic event-triggered mechanism,instead of a static event-triggered mechanism, is employed to select useful data. By constructing a meaningful Lyapunov–Krasovskii functional, a delay-dependent criterion is derived in terms of linear matrix inequalities for ensuring the global asymptotic stability of the augmented system. In the end, two numerical simulations are employed to illustrate the feasibility and validity of the proposed theoretical results.
基金This work was supported by Science and Technology Cooperation Special Project of Shijiazhuang(SJZZXA23005).
文摘In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness.