期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cryopreserved Fibroblast and Mesenchymal Stem Cells (MSCs) Being Alternative Mitochondrial Donors for Mitochondrial Organelle Transplantation (MOT)
1
作者 Xianpeng Jiang Brent Segal +1 位作者 Mark S. Kindy Catherine C. Baucom 《Journal of Biomaterials and Nanobiotechnology》 2024年第4期65-77,共13页
Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, traumatic brain and spinal cord injuries, cerebral ... Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, traumatic brain and spinal cord injuries, cerebral stroke, and neurodegenerative diseases. The earlier MOT results in better efficacy in animal models of urgent diseases such as ischemic stroke, and traumatic brain and spinal cord injuries. There is no long-term method to preserve mitochondria. Routine MOT procedure from cell growth to mitochondrial injection often takes serval weeks and is not satisfactory for urgent use cases. Hypothesis: Cryopreserved cells might be mitochondrial donors for MOT. Methods: We isolated mitochondria from cryopreserved human fibroblasts and mesenchymal stem cells (MSCs) in cell banks and compared the mitochondrial viability and transplantation with the mitochondria from fresh cells. Key findings: We found that mitochondria from fresh and cryopreserved cells are comparable in mitochondrial viability and transplantation. We also obtained data showing that mitochondria of fibroblasts and MSCs had similar membrane potential and transfer ability, but MSC’s mitochondria had higher ATP content than fibroblast’s mitochondria. In addition, oxygen consumption rates (OCRs) were higher in MSC’s mitochondria compared to fibroblast’s mitochondria and did not change between fresh and frozen cells. Conclusion: Cryopreserved fibroblasts and MSCs are alternative mitochondrial donors for MOT to fresh cells. MSCs could provide higher ATP-produced mitochondria than fibroblasts. 展开更多
关键词 Mitochondria Mitochondrial Organelle Transplantation MOT CRYOPRESERVATION Fibroblasts MSCS
下载PDF
Extracellular Vesicles from Mesenchymal Stromal Cells (imEVs) Improve Cold Preservation of Isolated Mitochondria
2
作者 Xianpeng Jiang Sergey Rodin +3 位作者 Ken Braesch-Andersen Catherine C. Baucom Karl-Henrik Grinnemo Brent Segal 《Journal of Biosciences and Medicines》 2024年第1期52-63,共12页
Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, Parkinson’s diseases, brain and spinal cord injuri... Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, Parkinson’s diseases, brain and spinal cord injuries, and amyotrophic lateral sclerosis (ALS). However, one of the major challenges for widespread usage is a methodology for preservation of isolated mitochondria. Extracellular vesicles (EVs) are phospholipid bilayer-enclosed vesicles released from cells. EVs carry a cargo of proteins, nucleic acids, lipids, metabolites, and even organelles such as mitochondria. Purpose: To test if EVs enhance the stability of isolated mitochondria. Methods: We mixed isolated mitochondria of fibroblasts with EVs of mesenchymal stromal cells (imEVs) (9:1 in volume) and stored the mixture at 2°C - 6°C for different time periods. We measured morphology, mitochondrial membrane potential (MMP) and mitochondrial ATP content at 0, 2, 5 days. Key findings: After 2 days of storage, the mito-chondria without imEVs lost approximate 70% MMP (RFU: 1822 ± 68), compared to the fresh mitochondria (RFU: 5458 ± 52) (p 0.05). In agreement with MMP, mitochondria without imEVs lost significant mitochondrial ATP content (p 0.05), after 2 days of cold storage, compared to fresh mitochondria. Microscopy showed that imEVs promoted aggregation of isolated mitochondria. Summary: The preliminary data showed that imEVs enhanced the stability of isolated mitochondria in cold storage. 展开更多
关键词 MITOCHONDRIA Extracellular Vesicles Mitochondrial Preservation MOT imEVs
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部