期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock 被引量:4
1
作者 Mahmood Shakiba Masoud Riazi +1 位作者 Shahab Ayatollahi Mostafa Takband 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1699-1707,共9页
Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.Th... Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively. 展开更多
关键词 Carbonated WATER Connate WATER CARBONATE RESERVOIR Enhanced oil RECOVERY Secondary RECOVERY CO2 storage
下载PDF
Review on application of nanoparticles for EOR purposes: A critical review of the opportunities and challenges 被引量:16
2
作者 Yousef Kazemzadeh Sanaz Shojaei +1 位作者 Masoud Riazi Mohammad Sharifi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期237-246,共10页
Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tensi... Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant. 展开更多
关键词 Enhance oil recovery NANOFLUID injection Nanoparticle Interfacial tension WETTABILITY ALTERATION PORE BLOCKAGE
下载PDF
Enhancing the spontaneous imbibition rate of water in oil-wet dolomite rocks through boosting a wettability alteration process using carbonated smart brines 被引量:5
3
作者 Ehsan Ghandi Rafat Parsaei Masoud Riazi 《Petroleum Science》 SCIE CAS CSCD 2019年第6期1361-1373,共13页
Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To a... Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery. 展开更多
关键词 Spontaneous imbibition Carbonated smart water Wettability alteration Enhanced oil recovery Dolomite rocks
下载PDF
Activating solution gas drive as an extra oil production mechanism after carbonated water injection 被引量:2
4
作者 Mahmood Shakiba Shahab Ayatollahi Masoud Riazi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2938-2945,共8页
Enhanced oil recovery(EOR)methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases.Over the last decade,carbonated water injection(CWI)has been conside... Enhanced oil recovery(EOR)methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases.Over the last decade,carbonated water injection(CWI)has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency.During CWI process,as the reservoir pressure declines,the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur.As a result,it can lead to oil saturation restoration and subsequently,oil displacement due to the hysteresis effect.At this condition,CO2 would act as insitu dissolved gas into the oil phase,and play the role of an artificial solution gas drive(SGD).In this study,the effect of SGD as an extra oil recovery mechanism after secondary and tertiary CWI(SCWI-TCWI)modes has been experimentally investigated in carbonate rocks using coreflood tests.The depressurization tests resulted in more than 25%and 18%of original oil in place(OOIP)because of the SGD after SCWI and TCWI tests,respectively.From the ultimate enhanced oil recovery point of view,the efficiency of SGD was observed to be more than one-third of that of CWI itself.Furthermore,the pressure drop data revealed that the system pressure depends more on the oil production pattern than water production. 展开更多
关键词 Solution gas drive Gas nucleation Carbonated water Enhanced oil recovery CO2 capture
下载PDF
Experimental investigation of different brines imbibition influences on co-and counter-current oil flows in carbonate reservoirs 被引量:1
5
作者 Pouyan Ahmadi Mohammad Reza Aghajanzadeh +2 位作者 Masoud Riazi Mohammad Reza Malayeri Mohammad Sharifi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第5期17-29,共13页
Imbibition of water,as wetting phase in oil-wet fractured carbonate reservoirs,plays a key role in fluid flow between matrix and fracture system.The type of injected seawater and its chemistry would profoundly influen... Imbibition of water,as wetting phase in oil-wet fractured carbonate reservoirs,plays a key role in fluid flow between matrix and fracture system.The type of injected seawater and its chemistry would profoundly influence the imbibition process.In this study,the impact of smart water(a brine that its ions have been adjusted to facilitate oil recovery)and low salinity water on co-and counter-current imbibition processes for oil-wet carbonate cores has been experimentally investigated.The results show an increase of about 10% in oil recovery for co-and counter-currents for smart seawater imbibition compared to that of low salinity seawater.In addition,as a result of the influence of co-and counter-current on each other,by co-current removal from one core face,the countercurrent in the other face would be intensified by as much as about 75%.A close examination of different lengths(5,7 and 9 cm)of carbonate cores with the same permeability revealed that by decreasing porous medium length,the amount of counter-current producing oil would be decreased so that in the 5 cm core,counter current oil production will not happen.For similar core lengths by increasing permeability,the share of counter current flow would be decreased approximately 18% since the capillary pressure could not overcome non-wetting phase viscous forces.Considering the role of matrix length along with a modified brine(which is designed according to the matrix mixture)strengthen the relevant mechanisms to have more oil production so that the higher thickness of matrix causes the higher amount of co-current oil producing and consequently more total recovery. 展开更多
关键词 Smart water CO-CURRENT Counter current WETTABILITY ALTERATION Oil recovery
下载PDF
Viscous fingering and its effect on areal sweep efficiency during waterflooding: an experimental study 被引量:3
6
作者 Zahra Kargozarfard Masoud Riazi Shahab Ayatollahi 《Petroleum Science》 SCIE CAS CSCD 2019年第1期105-116,共12页
Viscous fingering is one of the main challenges that could reduce areal sweep efficiency during waterflooding in oil reservoirs. A series of waterflooding experiments were carried out in a Hele-Shaw cell at ambient te... Viscous fingering is one of the main challenges that could reduce areal sweep efficiency during waterflooding in oil reservoirs. A series of waterflooding experiments were carried out in a Hele-Shaw cell at ambient temperature during which areal sweep efficiency was estimated and techniques to ease the fingering problem were examined. The onset and propagation of viscous fingers were monitored as a function of both injection rate and injection/production positions. Image processing techniques were utilized to quantitatively investigate the propagation of fingers. The experimental results show that, under specific conditions, increasing the number of finger branches could improve the areal sweep efficiency, whereas growth of a single narrow finger has a negative impact on oil displacement efficiency. According to the obtained results,increasing the injection rate improves the areal sweep efficiency up to a critical rate at which viscous fingers start to grow.The impact of heterogeneity of the medium on distributing the viscous fingers was also investigated by introducing two different arrangements of fractures in the model. The results show that fractures perpendicular to the direction of flow would distribute the displacing water more uniformly, while fractures in the direction of flow would amplify the unfavorable sweep efficiency. 展开更多
关键词 VISCOUS FINGERING Areal SWEEP efficiency Front instability Mobility ratio FRACTURES HELE-SHAW cell
下载PDF
Impact of pertinent parameters on foam behavior in the entrance region of porous media:mathematical modeling 被引量:1
7
作者 Fereshteh Samimi Zahra Sakhaei Masoud Riazi 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1669-1682,共14页
Foam injection is a promising solution for control of mobility in oil and gas field exploration and development,including enhanced oil recovery,matrix-acidization treatments,contaminated-aquifer remediation and gas le... Foam injection is a promising solution for control of mobility in oil and gas field exploration and development,including enhanced oil recovery,matrix-acidization treatments,contaminated-aquifer remediation and gas leakage prevention.This study presents a numerical investigation of foam behavior in a porous medium.Fractional flow method is applied to describe steady-state foam displacement in the entrance region.In this model,foam flow for the cases of excluding and including capillary pressure and for two types of gas,nitrogen(N2)and carbon dioxide(CO2)are investigated.Effects of pertinent parameters are also verified.Results indicate that the foam texture strongly governs foam flow in porous media.Required entrance region may be quite different for foam texture to accede local equilibrium,depending on the case and physical properties that are used.According to the fact that the aim of foaming of injected gas is to reduce gas mobility,results show that CO2 is a more proper injecting gas than N2.There are also some ideas presented here on improvement in foam displacement process.This study will provide an insight into future laboratory research and development of full-field foam flow in a porous medium. 展开更多
关键词 Foam displacement Entrance region Fractional flow method Foam texture Water saturation Mathematical modeling
下载PDF
Chemical treatment for sand production control:A review of materials,methods,and field operations 被引量:1
8
作者 Ali Safaei Mohammad Asefi +4 位作者 Mohsen Ahmadi Tayebe Pourshamsi Shima Baloochestanzadeh Ali Khalilnezhad Masoud Riazi 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1640-1658,共19页
Sand production from loosely consolidated reservoirs is one of the critical issues in the oil and gas in-dustry all around the world that can cause many problems,such as erosion of surface and well equip-ment,sand acc... Sand production from loosely consolidated reservoirs is one of the critical issues in the oil and gas in-dustry all around the world that can cause many problems,such as erosion of surface and well equip-ment,sand accumulation in wells and operation facilities,buckling of casing in cased-hole wells and well productivity reduction.Sand production control methods include restrictive production rate,mechanical methods(slotted liner,wire-wrapped screen,pre-packed screen,frac-pack,gravel pack,high-rate water pack)and chemical consolidation that chemical method is considered for more effectiveness in sand production alleviation due to increasing formation strength in near wellbore region.This review provides an overview on the laboratory and filed operation investigations of chemical remedy for sand production.Some used chemical agents and more common laboratory tests for evaluating the chemical performance in sand consolidation are introduced in this paper.Furthermore,the results of field operations and in-jections of chemicals into the desired formation are also reported.These results show that the chemical sand consolidation is more effective in newly perforated wells which have no sand production experi-ence and have a production history of less than two years.Finally,it was concluded that the main challenges in applying this method are permeability and capillary force reduction around the wellbore and selective injection into the targeted formation layers. 展开更多
关键词 Sand production Loosely consolidated reservoirs Formation strength Chemical remedy Permeabilityreduction
下载PDF
Effects of initial wettability and different surfactant-silica nanoparticles flooding scenarios on oil-recovery from carbonate rocks 被引量:1
9
作者 Amin Rezaei Amin Khodabakhshi +1 位作者 Amir Esmaeili Mehdi Razavifar 《Petroleum》 EI CSCD 2022年第4期499-508,共10页
Initial wettability of rock surfaces plays a crucial role in displacement efficiency during core flooding experiments.In this study,linear alkylbenzene sulfonic acid(LABSA)and silica nanoparticles(NPs)were utilized as... Initial wettability of rock surfaces plays a crucial role in displacement efficiency during core flooding experiments.In this study,linear alkylbenzene sulfonic acid(LABSA)and silica nanoparticles(NPs)were utilized as enhanced oil recovery(EOR)agents to improve oil recovery from carbonate rock samples.Prior to the core flooding experiments,effects of the presence of LABSA and SiO_(2)NPs on oil-water interfacial tension(IFT),wettability alteration,and surfactant adsorption on the rock surfaces were evaluated.The results of IFT/contact angle measurements showed that by adding 0.03 wt%LABSA,the IFT,and contact angle reduced from the initial values of 36.9 mN/m and 115.6°±0.2°to 8.3 mN/m and 100.3°±0.4°,respectively.Furthermore,incorporating SiO_(2)NPs(0.1 wt%)into the system causes a further decrease in IFT value(dropped to 2.2 mN/m),along with a substantial reduction in contact angle(final contact angle after 6 h soaking into the solution was measured as 64.8°±0.3°).In addition,surfactant loss due to the adsorption on the rock surfaces decreased up to 35%in the presence of SiO_(2)NPs(0.1 wt%).Moreover,various core flooding scenarios in carbonate plugs with different initial wettability conditions were conducted,and the performance of the EOR agents in enhancing oil recovery from oilwet and water-wet core samples in the secondary and tertiary mode of flooding was evaluated.The outcomes revealed that the injection of a combination of chemicals,containing LABSA(0.03 wt%)and SiO_(2)(0.1 wt%)in the secondary mode leads to the highest ultimate oil recovery from sister carbonate core samples. 展开更多
关键词 LABSA Enhanced oil recovery Silica nanoparticles IFT Contact angle Adsorption CARBONATES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部