Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhi...Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES.展开更多
High-throughput sequencing studies generate vast amounts of taxonomic data.Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the ...High-throughput sequencing studies generate vast amounts of taxonomic data.Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone.We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative.Based on phylogenies and divergence time estimates,we adopt phylum rank to Aphelidiomycota,Basidiobolomycota,Calcarisporiellomycota,Glomeromycota,Entomophthoromycota,Entorrhizomycota,Kickxellomycota,Monoblepharomycota,Mortierellomycota and Olpidiomycota.We accept nine subkingdoms to accommodate these 18 phyla.We consider the kingdom Nucleariae(phyla Nuclearida and Fonticulida)as a sister group to the Fungi.We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework,using this or any other classification system.We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.展开更多
基金funded by the EU Regional Development Fund within the framework of the Centre of Excellence EcolChange(2014-2020.4.01.15-0002),the European Commission through the European Research Council(advanced grant 322603,SIPVOL+),the Estonian Research Council(personal grant PSG884)base funding nr 190200,the National Natural Science foundation of China(31711530648)+2 种基金the Personnel Startup Project of the Scientific Research and Development Foundation of Zhejiang A&F University(2021FR041)the study was partly purchased from funding by the EU Regional Development Fund(AnaEE Estonia,2014-2020.4.01.20-0285,and the project“Plant Biology Infrastructure-TAIM”,2014-2020.4.01.20-0282)the Estonian Research Council(“Plant Biology Infrastructure-TAIM”,TT5).
文摘Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES.
基金LT acknowledges funding from the Estonian Science Foundation(1399PUT,IUT20-30),MOBERC and ECOLCHANGE.
文摘High-throughput sequencing studies generate vast amounts of taxonomic data.Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone.We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative.Based on phylogenies and divergence time estimates,we adopt phylum rank to Aphelidiomycota,Basidiobolomycota,Calcarisporiellomycota,Glomeromycota,Entomophthoromycota,Entorrhizomycota,Kickxellomycota,Monoblepharomycota,Mortierellomycota and Olpidiomycota.We accept nine subkingdoms to accommodate these 18 phyla.We consider the kingdom Nucleariae(phyla Nuclearida and Fonticulida)as a sister group to the Fungi.We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework,using this or any other classification system.We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.