Almost all the oil and gas reservoirs developed in marine sedimentary strata of China have undergone processes of multi-phase reservoir formation and later modification. The irregular reservoirs are classified into th...Almost all the oil and gas reservoirs developed in marine sedimentary strata of China have undergone processes of multi-phase reservoir formation and later modification. The irregular reservoirs are classified into three types as the Naxi, Tahe and Renqiu ones, increasing successively in the development degree of karstificated pores and fissures and the connection degree of independent reservoirs. In these reservoirs, the unity in the fluid feature, pressure and oil-gas-water interface also increases successively from the Naxi to the Renqiu type. The main body of Ordovician reservoirs of the Tahe Oilfield in the Tarim Basin is a network pool rather than a stratified, massive, stratigraphically-unconformed or weathering-crust one. The fluid nature of oil, gas and water, the interface positions and the pressures, as well as the dynamic conditions of fluids within the reservoirs during the production are all different from those in stratified or massive oil and gas reservoirs. Carbonates in the Akekule uplift and the Tahe Oilfield are assemblages of various types of reservoirs, which have an overall oil-bearing potential and obvious uneven distribution. Testing and producing tests are the major means to evaluate this type of reservoirs and acid fracturing improvement is a key link in petroleum exploration and development.展开更多
As a kind of abnormal natural gas formed with special mechanism, the deep-basin gas, accumulated in the lower parts of a basin or syncline and trapped by a tight reservoir, has such characteristics as gas-water invers...As a kind of abnormal natural gas formed with special mechanism, the deep-basin gas, accumulated in the lower parts of a basin or syncline and trapped by a tight reservoir, has such characteristics as gas-water inversion, abnormal pressure, continuous distribution and tremendous reserves. Being a geological product of the evolution of petroliferous basins by the end of the middle-late stages, the formation of a deep-basin gas accumulation must meet four conditions, i.e., continuous and sufficient gas supply, tight reservoirs in continuous distribution, good sealing caps and stable structures. The areas, where the expansion force of natural gas is smaller than the sum of the capillary force and the hydrostatic pressure within tight reservoirs, are favorable for forming deep-basin gas pools. The range delineated by the above two forces corresponds to that of the deep-basin gas trap. Within the scope of the deep-basin gas trap, the balance relationship between the amounts of ingoing and overflowing gases determines the gas-bearing area of the deep-basin gas pool. The gas volume in regions with high porosity and high permeability is worth exploring under current technical conditions and it is equivalent to the practical resources (about 10%-20% of the deep-basin gas). Based on studies of deep-basin gas formation conditions, the theory of force balance and the equation of material balance, the favorable areas and gas-containing ranges, as well as possible gas-rich regions are preliminarily predicted in the deep-basin gas pools in the Upper Paleozoic He-8 segment of the Ordos basin.展开更多
文摘Almost all the oil and gas reservoirs developed in marine sedimentary strata of China have undergone processes of multi-phase reservoir formation and later modification. The irregular reservoirs are classified into three types as the Naxi, Tahe and Renqiu ones, increasing successively in the development degree of karstificated pores and fissures and the connection degree of independent reservoirs. In these reservoirs, the unity in the fluid feature, pressure and oil-gas-water interface also increases successively from the Naxi to the Renqiu type. The main body of Ordovician reservoirs of the Tahe Oilfield in the Tarim Basin is a network pool rather than a stratified, massive, stratigraphically-unconformed or weathering-crust one. The fluid nature of oil, gas and water, the interface positions and the pressures, as well as the dynamic conditions of fluids within the reservoirs during the production are all different from those in stratified or massive oil and gas reservoirs. Carbonates in the Akekule uplift and the Tahe Oilfield are assemblages of various types of reservoirs, which have an overall oil-bearing potential and obvious uneven distribution. Testing and producing tests are the major means to evaluate this type of reservoirs and acid fracturing improvement is a key link in petroleum exploration and development.
基金This study is part of the National Key Basic Research Project(973)of the"Formation and Distribution of Oil and Gas in Typical Superimposed Basins in China(G19990433)"supported by the Ministry of Science and Technology of China.
文摘As a kind of abnormal natural gas formed with special mechanism, the deep-basin gas, accumulated in the lower parts of a basin or syncline and trapped by a tight reservoir, has such characteristics as gas-water inversion, abnormal pressure, continuous distribution and tremendous reserves. Being a geological product of the evolution of petroliferous basins by the end of the middle-late stages, the formation of a deep-basin gas accumulation must meet four conditions, i.e., continuous and sufficient gas supply, tight reservoirs in continuous distribution, good sealing caps and stable structures. The areas, where the expansion force of natural gas is smaller than the sum of the capillary force and the hydrostatic pressure within tight reservoirs, are favorable for forming deep-basin gas pools. The range delineated by the above two forces corresponds to that of the deep-basin gas trap. Within the scope of the deep-basin gas trap, the balance relationship between the amounts of ingoing and overflowing gases determines the gas-bearing area of the deep-basin gas pool. The gas volume in regions with high porosity and high permeability is worth exploring under current technical conditions and it is equivalent to the practical resources (about 10%-20% of the deep-basin gas). Based on studies of deep-basin gas formation conditions, the theory of force balance and the equation of material balance, the favorable areas and gas-containing ranges, as well as possible gas-rich regions are preliminarily predicted in the deep-basin gas pools in the Upper Paleozoic He-8 segment of the Ordos basin.