The hexanitrostilben(HNS) is a thermally stable explosive that can be prepared from hexanitrobibenzyl(HNBB).Therefore,the investigation of thermal stability of HNBB can be important in the yield of preparation of HNS....The hexanitrostilben(HNS) is a thermally stable explosive that can be prepared from hexanitrobibenzyl(HNBB).Therefore,the investigation of thermal stability of HNBB can be important in the yield of preparation of HNS.The decomposition kinetic of HNBB and HNS are studied by non-isothermal gravimetric method.The TG/DTG curves in non-isothermal method are obtained in range of 25℃-400℃at heating rates of 3℃/min,5℃/min,8℃/min,10℃/min and 12℃/min.The data of weighttemperature are used for calculation of activation energy(E_a) of thermal decomposition reactions by methods of Ozawa,Kissinger,Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose(KAS) as modelfree methods and Strink's equation as model-fitting method.The compensation effect is used for prediction of mechanism and determination of pre-exponential factor(InA) of the decomposition reaction.A reduction 60 kj/mol for the average of activation energy of thermal decomposition reaction of HNBB is obtained versus HNS.This result shows the lower thermal stability of HNBB in comparison to HNS,The Avrami equation(A_(3/2)) with function f(α)=3/2(1-α)[-In(1-α)]^(1/3) indicates the predicted mechanism for thermal decomposition reaction both explosives.展开更多
Many of the physical and functional properties of RDX and HMX explosives are related to the crystalline structure of these materials. Crystalline defects affect the quality of the explosives. Therefore, in order to en...Many of the physical and functional properties of RDX and HMX explosives are related to the crystalline structure of these materials. Crystalline defects affect the quality of the explosives. Therefore, in order to enhance the quality of these materials, it is necessary to form crystals with the lowest defects. In this research, we report the optimization of recrystallization process of RDX and HMX by statistical techniques. The solvent/anti-solvent procedure was used for recrystallization of HMX and RDX particles. The four parameters of i) ratio of anti-solvent to solvent, ii) ratio of solute to solvent, iii) aging time, and iv)cooling rate of mixture, were optimized by Taguchi analysis design. Taguchi L16 orthogonal array was used with sixteen rows corresponding to the number of tests in four columns at four levels. The apparent density of recrystallized of RDX and HMX particles was considered as the quality characteristic with the concept of "the larger-the-better". The obtained graphs showed that the studied parameters were optimized in ratio 1:1 for anti-solvent to solvent, ratio 0.1 g,m L^(-1) for solute to solvent, aging time of 2 h and cooling rate of 1℃,min^(-1). Also, the correlation between the investigated parameters and apparent density of crystals were studied by multiple linear regressions(MLR) method for obtaining a model of prediction of apparent density. The P-values were indicated that in confidence level of 95%, the null hypothesis is rejected and a meaningful addition is observed in the proposed model.展开更多
The kintic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 ℃, respectively, were studied by isothermal and nonisothermal gravimet...The kintic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 ℃, respectively, were studied by isothermal and nonisothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 ℃. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminm metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30-330 ℃ at heating rates of 10,15 and 20 ℃·min^(-1).The TG/DTG data were used for determination of activation energy(E_a) of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose(KAS) methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99-120 and 66-70 kJ mol^(-1)respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade.展开更多
Photocurable systems are more effective,faster and require less energy than conventional thermal curing methods.To facilitate the ongoing transition toward a biobased economy,photoactive compounds were synthesized fro...Photocurable systems are more effective,faster and require less energy than conventional thermal curing methods.To facilitate the ongoing transition toward a biobased economy,photoactive compounds were synthesized from tall oil fatty acids(TOFA)which is a by-product from wood pulping.In this study,photoactive monomers were synthesized by two different chemical pathways using oleic acid and TOFA as raw materials.Firstly,double bonds present in TOFA were epoxidized,followed by epoxy ring-opening with acrylic acid which introduced photoactive functional groups into the fatty acid backbone.Intermediates and final products were analysed using titration methods(acidic value,epoxy value,iodine value)and FTIR.The preferred final product(3-acryloyloxy-2-hydroxypropyl)-9-hydroxy-10-acryoyloxystearate(Acr-St)was synthesized by both pathways.In the case of oleic acid,a compound of Acr-St was yielded,while in case of TOFA,the Acr-St was present in mixture along with TOFA acryloyloxy derivates(TOFA-acr.der.).The final products were photopolymerized using UV irradiation(396 nm)and as a photoinitiator 3 wt%solution of TPO(2,4,6–trimethylbenzoyl diphenylphosphine oxide)was used.However,only the synthesis using oleic acid yielded a photocurable compound.展开更多
LiFePO4/C samples were prepared at different temperatures by adding sngar to the synthetic precursor. The samples were characterized by X-ray diffraction(XRD). Their crystal phases show an olivine structure. Only th...LiFePO4/C samples were prepared at different temperatures by adding sngar to the synthetic precursor. The samples were characterized by X-ray diffraction(XRD). Their crystal phases show an olivine structure. Only the sample obtained at 700℃ has a larger discharge capacity, which has good electrochemical properties: its discharge specific capacity is 120. 3 mAh/g at a current of 0. 05 mA, and its capacity fade is very low after 20 cycles. It is demonstrated that the best synthetic temperature should be 700℃.展开更多
In this study biomimetic fluoridated phosphate doped hydrophilic coatings with various ions on CoCrMo alloy were pre- pared by electrodeposition. Cu and Zn ions were chosen for doping because of their well known antib...In this study biomimetic fluoridated phosphate doped hydrophilic coatings with various ions on CoCrMo alloy were pre- pared by electrodeposition. Cu and Zn ions were chosen for doping because of their well known antibacterial activity. The struc^xes of the coatings were identified using Fourier-transform Infrared (FTIR) analysis. X-ray Diffraction (XRD) analysis was performed to evaluate crystallite dimensions of the specimen surface. The contact angle was measured in order to establish the hydrophilic/hydrophobic balance and to compute surface energy. All studied samples have a hydrophilic character which is weaken after doping. The time evolution of ions releasing from the coatings was evaluated with an inductively plasma mass spectrometer after immersion in saline phosphate. The hemolytic experiments indicate that except the fluoridated coatings doped with Zn which is slightly hemolytic, all other samples are non hemolytic. The test for antibacterial activity for Staphy- lococcus aureus and Pseudomonas aeruginosa indicated that the fluoridated biomimetic coating doped with various positive ions increases bacterial growth inhibition level significantly. Fluoridated phosphate coating doped with Cu has best antibacterial activity展开更多
Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer(SAN)blends with low content of ion-exchanger particles(5 wt.%). The membranes obtained by phase inversion were used for the removal of...Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer(SAN)blends with low content of ion-exchanger particles(5 wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by p H and conductivity measurements in the solution. The electrodialytic performance,evaluated in terms of extraction removal degree(rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest(over 70%) was attained at8 V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements.展开更多
The aim of the present paper is to characterize bioinspired chitosan (CS) + hydroxyapatite (HA) coatings with various components ratio on a zirconium alloy with titanium. The coatings were characterized by FT-IR,...The aim of the present paper is to characterize bioinspired chitosan (CS) + hydroxyapatite (HA) coatings with various components ratio on a zirconium alloy with titanium. The coatings were characterized by FT-IR, SEM, hydrophilic/hydrophobic balance, adherence, roughness, electrochemical stability and in vitro cell response. Electrochemical tests, including potentio- dynamic polarization curves and electrochemical impedance spectroscopy, were performed in normal saline physiological solution. Cell viability of MC3T3-E1 osteoblasts, lactate dehydrogenase, nitric oxide, and Reactive Oxygen Species (ROS) levels, as well as actin cytoskeleton morphology, were evaluated as biological in vitro tests. The results on in vitro cell response indicated good cell membrane integrity and viability for all samples, but an increased cell number, a decreased ROS level and a better cytoskeleton organization were noticed for the sample with a higher CS content. The coating with highest CS concen- tration indicated the best performance based on the experimental data. The highest hydrophilic character, highest resistance to corrosion and best biocompatibility as well recommend this coating for bioapplications in tissue engineering.展开更多
基金the research committee of Malek-ashtar University of Technology(MUT)for supporting this work。
文摘The hexanitrostilben(HNS) is a thermally stable explosive that can be prepared from hexanitrobibenzyl(HNBB).Therefore,the investigation of thermal stability of HNBB can be important in the yield of preparation of HNS.The decomposition kinetic of HNBB and HNS are studied by non-isothermal gravimetric method.The TG/DTG curves in non-isothermal method are obtained in range of 25℃-400℃at heating rates of 3℃/min,5℃/min,8℃/min,10℃/min and 12℃/min.The data of weighttemperature are used for calculation of activation energy(E_a) of thermal decomposition reactions by methods of Ozawa,Kissinger,Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose(KAS) as modelfree methods and Strink's equation as model-fitting method.The compensation effect is used for prediction of mechanism and determination of pre-exponential factor(InA) of the decomposition reaction.A reduction 60 kj/mol for the average of activation energy of thermal decomposition reaction of HNBB is obtained versus HNS.This result shows the lower thermal stability of HNBB in comparison to HNS,The Avrami equation(A_(3/2)) with function f(α)=3/2(1-α)[-In(1-α)]^(1/3) indicates the predicted mechanism for thermal decomposition reaction both explosives.
文摘Many of the physical and functional properties of RDX and HMX explosives are related to the crystalline structure of these materials. Crystalline defects affect the quality of the explosives. Therefore, in order to enhance the quality of these materials, it is necessary to form crystals with the lowest defects. In this research, we report the optimization of recrystallization process of RDX and HMX by statistical techniques. The solvent/anti-solvent procedure was used for recrystallization of HMX and RDX particles. The four parameters of i) ratio of anti-solvent to solvent, ii) ratio of solute to solvent, iii) aging time, and iv)cooling rate of mixture, were optimized by Taguchi analysis design. Taguchi L16 orthogonal array was used with sixteen rows corresponding to the number of tests in four columns at four levels. The apparent density of recrystallized of RDX and HMX particles was considered as the quality characteristic with the concept of "the larger-the-better". The obtained graphs showed that the studied parameters were optimized in ratio 1:1 for anti-solvent to solvent, ratio 0.1 g,m L^(-1) for solute to solvent, aging time of 2 h and cooling rate of 1℃,min^(-1). Also, the correlation between the investigated parameters and apparent density of crystals were studied by multiple linear regressions(MLR) method for obtaining a model of prediction of apparent density. The P-values were indicated that in confidence level of 95%, the null hypothesis is rejected and a meaningful addition is observed in the proposed model.
基金the research committee of Malek-ashtar University of Technology(MUT)
文摘The kintic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 ℃, respectively, were studied by isothermal and nonisothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 ℃. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminm metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30-330 ℃ at heating rates of 10,15 and 20 ℃·min^(-1).The TG/DTG data were used for determination of activation energy(E_a) of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose(KAS) methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99-120 and 66-70 kJ mol^(-1)respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade.
文摘Photocurable systems are more effective,faster and require less energy than conventional thermal curing methods.To facilitate the ongoing transition toward a biobased economy,photoactive compounds were synthesized from tall oil fatty acids(TOFA)which is a by-product from wood pulping.In this study,photoactive monomers were synthesized by two different chemical pathways using oleic acid and TOFA as raw materials.Firstly,double bonds present in TOFA were epoxidized,followed by epoxy ring-opening with acrylic acid which introduced photoactive functional groups into the fatty acid backbone.Intermediates and final products were analysed using titration methods(acidic value,epoxy value,iodine value)and FTIR.The preferred final product(3-acryloyloxy-2-hydroxypropyl)-9-hydroxy-10-acryoyloxystearate(Acr-St)was synthesized by both pathways.In the case of oleic acid,a compound of Acr-St was yielded,while in case of TOFA,the Acr-St was present in mixture along with TOFA acryloyloxy derivates(TOFA-acr.der.).The final products were photopolymerized using UV irradiation(396 nm)and as a photoinitiator 3 wt%solution of TPO(2,4,6–trimethylbenzoyl diphenylphosphine oxide)was used.However,only the synthesis using oleic acid yielded a photocurable compound.
文摘LiFePO4/C samples were prepared at different temperatures by adding sngar to the synthetic precursor. The samples were characterized by X-ray diffraction(XRD). Their crystal phases show an olivine structure. Only the sample obtained at 700℃ has a larger discharge capacity, which has good electrochemical properties: its discharge specific capacity is 120. 3 mAh/g at a current of 0. 05 mA, and its capacity fade is very low after 20 cycles. It is demonstrated that the best synthetic temperature should be 700℃.
文摘In this study biomimetic fluoridated phosphate doped hydrophilic coatings with various ions on CoCrMo alloy were pre- pared by electrodeposition. Cu and Zn ions were chosen for doping because of their well known antibacterial activity. The struc^xes of the coatings were identified using Fourier-transform Infrared (FTIR) analysis. X-ray Diffraction (XRD) analysis was performed to evaluate crystallite dimensions of the specimen surface. The contact angle was measured in order to establish the hydrophilic/hydrophobic balance and to compute surface energy. All studied samples have a hydrophilic character which is weaken after doping. The time evolution of ions releasing from the coatings was evaluated with an inductively plasma mass spectrometer after immersion in saline phosphate. The hemolytic experiments indicate that except the fluoridated coatings doped with Zn which is slightly hemolytic, all other samples are non hemolytic. The test for antibacterial activity for Staphy- lococcus aureus and Pseudomonas aeruginosa indicated that the fluoridated biomimetic coating doped with various positive ions increases bacterial growth inhibition level significantly. Fluoridated phosphate coating doped with Cu has best antibacterial activity
文摘Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer(SAN)blends with low content of ion-exchanger particles(5 wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by p H and conductivity measurements in the solution. The electrodialytic performance,evaluated in terms of extraction removal degree(rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest(over 70%) was attained at8 V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements.
文摘The aim of the present paper is to characterize bioinspired chitosan (CS) + hydroxyapatite (HA) coatings with various components ratio on a zirconium alloy with titanium. The coatings were characterized by FT-IR, SEM, hydrophilic/hydrophobic balance, adherence, roughness, electrochemical stability and in vitro cell response. Electrochemical tests, including potentio- dynamic polarization curves and electrochemical impedance spectroscopy, were performed in normal saline physiological solution. Cell viability of MC3T3-E1 osteoblasts, lactate dehydrogenase, nitric oxide, and Reactive Oxygen Species (ROS) levels, as well as actin cytoskeleton morphology, were evaluated as biological in vitro tests. The results on in vitro cell response indicated good cell membrane integrity and viability for all samples, but an increased cell number, a decreased ROS level and a better cytoskeleton organization were noticed for the sample with a higher CS content. The coating with highest CS concen- tration indicated the best performance based on the experimental data. The highest hydrophilic character, highest resistance to corrosion and best biocompatibility as well recommend this coating for bioapplications in tissue engineering.