期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Imbalanced Data Classification Using SVM Based on Improved Simulated Annealing Featuring Synthetic Data Generation and Reduction 被引量:1
1
作者 Hussein Ibrahim Hussein Said Amirul Anwar Muhammad Imran Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第4期547-564,共18页
Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the perform... Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the performance of the machine learning algorithm such as Support Vector Machine(SVM)is affected when dealing with an imbalanced dataset.The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples.In this paper,a hybrid approach combining data pre-processing technique andSVMalgorithm based on improved Simulated Annealing(SA)was proposed.Firstly,the data preprocessing technique which primarily aims at solving the resampling strategy of handling imbalanced datasets was proposed.In this technique,the data were first synthetically generated to equalize the number of samples between classes and followed by a reduction step to remove redundancy and duplicated data.Next is the training of a balanced dataset using SVM.Since this algorithm requires an iterative process to search for the best penalty parameter during training,an improved SA algorithm was proposed for this task.In this proposed improvement,a new acceptance criterion for the solution to be accepted in the SA algorithm was introduced to enhance the accuracy of the optimization process.Experimental works based on ten publicly available imbalanced datasets have demonstrated higher accuracy in the classification tasks using the proposed approach in comparison with the conventional implementation of SVM.Registering at an average of 89.65%of accuracy for the binary class classification has demonstrated the good performance of the proposed works. 展开更多
关键词 Imbalanced data resampling technique data reduction support vector machine simulated annealing
下载PDF
Electrical Tree Image Segmentation Using Hybrid Multi Scale Line Tracking Algorithm
2
作者 Mohd Annuar Isa Mohamad Nur Khairul Hafizi Rohani +7 位作者 Baharuddin Ismail Mohamad Kamarol Jamil Muzamir Isa Afifah Shuhada Rosmi Mohd Aminudin Jamlos Wan Azani Mustafa Nurulbariah Idris Abdullahi Abubakar Mas’ud 《Computers, Materials & Continua》 SCIE EI 2023年第4期741-760,共20页
Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained c... Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques. 展开更多
关键词 Image segmentation multi-scale line tracking electrical tree partial discharge high-voltage cable
下载PDF
Higher Order OAM Mode Generation Using Wearable Antenna for 5G NR Bands
3
作者 Shehab Khan Noor Arif Mawardi Ismail +6 位作者 Mohd Najib Mohd Yasin Mohamed Nasrun Osman Thennarasan Sabapathy Shakhirul Mat Salleh Ping Jack Soh Ali Hanafiah Rambe Nurulazlina Ramli 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期537-551,共15页
This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum(OAM)waves with Mode+2 at 3.5 GHz(3.4 to 3.6 GHz)of the sub-6 GHz fifth-generation(5G)New Radio(NR)band.Th... This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum(OAM)waves with Mode+2 at 3.5 GHz(3.4 to 3.6 GHz)of the sub-6 GHz fifth-generation(5G)New Radio(NR)band.The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate.In contrast to previous works involving the use of rigid substrates to generate OAM waves,this work explored the use of flexible substrates to generate OAM waves for the first time.Other than that,the proposed antenna was simulated,analyzed,fabricated,and tested to confirm the generation of OAMMode+2.With the same design,OAM Mode−2 can be generated readily simply by mirror imaging the feed network.Note that the proposed antenna operated at the desired frequency of 3.5 GHz with an overall bandwidth of 400 MHz in free space.Moreover,mode purity analysis is carried out to verify the generation of OAM Mode+2,and the purity obtained was 41.78%at free space flat condition.Furthermore,the effect of antenna bending on the purity of the generated OAM mode is also investigated.Lastly,the influence of textile properties on OAM modes is examined to assist future researchers in choosing suitable fabrics to design flexible OAM-based antennas.After a comprehensive analysis considering different factors related to wearable applications,this paper demonstrates the feasibility of generating OAMwaves using textile antennas.Furthermore,as per the obtained Specific Absorption Rate(SAR),it is found that the proposed antenna is safe to be deployed.The findings of this work have a significant implication for body-centric communications. 展开更多
关键词 Wearable antenna OAM vortex waves 5G textile antenna microstrip patch antenna specific absorption rate(SAR)
下载PDF
Liver Tumor Decision Support System on Human Magnetic Resonance Images:A Comparative Study
4
作者 Hiam Alquran Yazan Al-Issa +4 位作者 Mohammed Alslatie Isam Abu-Qasmieh Amin Alqudah Wan Azani Mustafa Yasmin Mohd Yacob 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1653-1671,共19页
Liver cancer is the second leading cause of cancer death worldwide.Early tumor detection may help identify suitable treatment and increase the survival rate.Medical imaging is a non-invasive tool that can help uncover... Liver cancer is the second leading cause of cancer death worldwide.Early tumor detection may help identify suitable treatment and increase the survival rate.Medical imaging is a non-invasive tool that can help uncover abnormalities in human organs.Magnetic Resonance Imaging(MRI),in particular,uses magnetic fields and radio waves to differentiate internal human organs tissue.However,the interpretation of medical images requires the subjective expertise of a radiologist and oncologist.Thus,building an automated diagnosis computer-based system can help specialists reduce incorrect diagnoses.This paper proposes a hybrid automated system to compare the performance of 3D features and 2D features in classifying magnetic resonance liver tumor images.This paper proposed two models;the first one employed the 3D features while the second exploited the 2D features.The first system uses 3D texture attributes,3D shape features,and 3D graphical deep descriptors beside an ensemble classifier to differentiate between four 3D tumor categories.On top of that,the proposed method is applied to 2D slices for comparison purposes.The proposed approach attained 100%accuracy in discriminating between all types of tumors,100%Area Under the Curve(AUC),100%sensitivity,and 100%specificity and precision as well in 3D liver tumors.On the other hand,the performance is lower in 2D classification.The maximum accuracy reached 96.4%for two classes and 92.1%for four classes.The top-class performance of the proposed system can be attributed to the exploitation of various types of feature selection methods besides utilizing the ReliefF features selection technique to choose the most relevant features associated with different classes.The novelty of this work appeared in building a highly accurate system under specific circumstances without any processing for the images and human input,besides comparing the performance between 2D and 3D classification.In the future,the presented work can be extended to be used in the huge dataset.Then,it can be a reliable,efficient Computer Aided Diagnosis(CAD)system employed in hospitals in rural areas. 展开更多
关键词 Liver tumors ensemble classifier 3D shape features 3D cooccurrence matrix ResNet101
下载PDF
Improvement method for cervical cancer detection: A comparative analysis
5
作者 NUR AIN ALIAS WAN AZANI MUSTAFA +3 位作者 MOHD AMINUDIN JAMLOS AHMED ALKHAYYAT KHAIRUL SHAKIR AB RAHMAN RAMI QMALIK 《Oncology Research》 SCIE 2021年第5期365-376,共12页
Cervical cancer is a prevalent and deadly cancer that affects women all over the world.It affects about 0.5 million women anually and results in over 0.3 million fatalities.Diagnosis of this cancer was previously done... Cervical cancer is a prevalent and deadly cancer that affects women all over the world.It affects about 0.5 million women anually and results in over 0.3 million fatalities.Diagnosis of this cancer was previously done manually,which could result in false positives or negatives.The researchers are still contemplating how to detect cervical cancer automatically and how to evaluate Pap smear images.Hence,this paper has reviewed several detection methods from the previous researches that has been done before.This paper reviews pre-processing,detection method framework for nucleus detection,and analysis performance of the method selected.There are four methods based on a reviewed technique from previous studies that have been running through the experimental procedure using Matlab,and the dataset used is established Herlev Dataset.The results show that the highest performance assessment metric values obtain from Method 1:Thresholding and Trace region boundaries in a binary image with the values of precision 1.0,sensitivity 98.77%,specificity 98.76%,accuracy 98.77%and PSNR 25.74%for a single type of cell.Meanwhile,the average values of precision were 0.99,sensitivity 90.71%,specificity 96.55%,accuracy 92.91%and PSNR 16.22%.The experimental results are then compared to the existing methods from previous studies.They show that the improvement method is able to detect the nucleus of the cell with higher performance assessment values.On the other hand,the majority of current approaches can be used with either a single or a large number of cervical cancer smear images.This study might persuade other researchers to recognize the value of some of the existing detection techniques and offer a strong approach for developing and implementing new solutions. 展开更多
关键词 Cervical cancer DETECTION Pap smear IMAGES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部