The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with G...The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with GPS field collected data in the area of Xiaowan-Dachaoshan Reservoirs of Lancangjiang River cascaded Hydropower Area. Consequently, the land-cover is divided into five subclasses, namely water, paddy field and wetland, bare dryland and sparse shrub, secondary forest and density forest. The result showed that the areas of bare land, upland and secondary forest decreased in 1988-1996, whereas from 1996 to 2000, water body and density forest keep invariability while the areas of paddy field and wetland, bare dryland and sparse scrub increasing and the area of secondary forest decrease; Features of reciprocal transformation between density forest and other type of land-cover had two points, i.e. secondary forest, bare dryland and sparse shrub converted to density forest; and density forest converted to secondary forest and paddy field and wetland. It reflects the dynamic variation of density forest; the area which slope less than 8° and greater than 15° shows bigger variation, however, less change in 8°-15°.展开更多
The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to impr...The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources.However,studying the flotation of complex solid–liquid systems is extremely difficult,and no systematic theory has been developed to date.In addition,the physical mechanism associated with combining reagents to improve the flotation effect has not been unified,which limits the development of flotation theory and the progress of flotation technology.In this study,we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that de-scribe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface.The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance.The flotation effect can be improved through synergy among multicomponent flotation reagents;its physical essence is the thermodynamic law that as the number of compon-ents of flotation reagents on the mineral surface increases,the surface adsorption entropy change increases,and the Gibbs free energy change of adsorption decreases.According to the results obtained using flotation thermodynamics theory,we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface,increasing the adsorption entropy change of the flotation reagents,decreasing the Gibbs free energy change,and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.展开更多
The Dahongshan Group,situated at the southwestern margin of the Yangtze Block,represents a geological unit characterized by relatively high-grade metamorphism in the region.This paper investigates the garnet-biotite s...The Dahongshan Group,situated at the southwestern margin of the Yangtze Block,represents a geological unit characterized by relatively high-grade metamorphism in the region.This paper investigates the garnet-biotite schist from the Laochanghe Formation of the Dahongshan Group,employing an integrated approach that includes petrological analysis,phase equilibrium modeling,and zircon U-Pb dating.The schist is mainly composed of garnet,biotite,plagioclase,quartz,rutile,and ilmenite.Phase equilibrium modeling revealed the peak metamorphic conditions of 8-9 kbar and 635-675°C.By further integrating the prograde metamorphic profile of garnet and geothermobarometric results,a clockwise P-T metamorphic evolution path is constructed,which includes an increase in temperature and pressure during the prograde stage.LA-ICP-MS zircon U-Pb dating and zircon Ti thermometry constrains the post-peak metamorphic age of 831.2±7.2 Ma.Integrated with previously reported results,it is revealed that the southwestern margin of the Yangtze Block experienced a large-scale regional metamorphism during the Neoproterozoic(890-750 Ma),which is related to the collisional orogenic process.This may be associated with the late-stage assembly of the Rodinia supercontinent or with local compression and subduction processes during the breakup of the Rodinia supercontinent.展开更多
Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new su...Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.展开更多
The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A ser...The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A series of laboratory tests,numerical simulations and theoretical analyses were carried out in this study to disclose the sliding mechanism of roof rock blocks under lateral disturbance.Firstly,the experiments on trapezoidal key block under various clamping loads and disturbance were conducted,followed by numerical simulations using the fast Lagrangian analysis of continua(FLAC3D).Then,based on the conventional wave propagation model and the classical shear-slip constitutive model,a theoretical model was proposed to capture the relative displacement between blocks and the sliding displacement of the key block.The results indicate that the sliding displacement of the key block increased linearly with the disturbance energy and decreased exponentially with the clamping load when the key block was disturbed to slide(without instability).Meanwhile,when the key block was disturbed to fall,two types of instability process may appear as immediate type or delayed type.In addition,the propagation of stress waves in the block system exhibited obvious low-velocity and lowfrequency characteristics,resulting in the friction reduction effect appearing at the contact interface,which is the essential reason for the sliding of rock blocks.The results can be applied to practical underground engineering and provide valuable guidance for the early detection and prevention of rockfalling disasters.展开更多
The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop...The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.展开更多
Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive st...Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.展开更多
This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through mic...This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.展开更多
The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the...The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.展开更多
The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinia...The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.展开更多
Along with slurry concentration and particle density,particle size distribution(PSD)of tailings also exerts a significant influence on the yield stress of cemented paste,a non-Newtonian fluid.In this work,a paste stab...Along with slurry concentration and particle density,particle size distribution(PSD)of tailings also exerts a significant influence on the yield stress of cemented paste,a non-Newtonian fluid.In this work,a paste stability coefficient(PSC)was proposed to characterize paste gradation and better reveal its connection to yield stress.This coefficient was proved beneficial to the construction of a unified rheological model,applicable to different materials in different mines,so as to promote the application of rheology in the pipeline transportation of paste.From the results,yield stress showed an exponential growth with increasing PSC,which reflected the proportion of solid particle concentration to the packing density of granular media in a unit volume of slurry,and could represent the properties of both slurry and granular media.It was found that slurry of low PSC contained extensive pores,generally around 20μm,encouraging free flow of water,constituting a relatively low yield stress.In contrast,slurry of high PSC had a compact and quite stable honeycomb structure,with pore sizes generally<5μm,causing the paste to overcome a higher yield stress to flow.展开更多
The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has bee...The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.展开更多
In this work,the growth of copper sulfide crystal onto azurite surfaces during sulfurization and its response to flotation are investigated.Filed emission scanning electron microscopy-energy dispersive X-ray spectrosc...In this work,the growth of copper sulfide crystal onto azurite surfaces during sulfurization and its response to flotation are investigated.Filed emission scanning electron microscopy-energy dispersive X-ray spectroscopy(FESEM) and X-ray diffraction(XRD) studies confirmed that the sulfurization of azurite is not limited to the mineral surface,but rather penetrates into the bulk to form covellite crystal(synCuS),creating favorable conditions for the stable adsorption of xanthate and greatly promoting the azurite flotation.Additionally,as demonstrated by X-ray photoelectron spectroscopy(XPS) and time of flight secondary ion mass spectrometry(TOF-SIMS) analyses,a redox reaction occurred during this process,and Cu(Ⅱ) onto the mineral surface was reduced to Cu(Ⅰ).Correspondingly,reduced S^(2-) was oxidized to(S_(2))^(2-),(S_n)^(-2),and even to deeper oxidation state S~0,(S_(x)O_(y))^(n-) and SO_(4)^(2-).Excess sodium sulfide strengthens copper sulfide to form onto the azurite surface,and provides enough raw material for crystal copper sulfide to grow,resulting in the formation of "flake-like" covellite with a better crystallinity.However,the floatability of azurite decreased dramatically under this condition,because the generated massive colloidal copper sulfide in flotation pulp deteriorates the flotation environment,resulting in a decreased effective adsorption of collector onto azurite surfaces.展开更多
Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface wit...Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface with hydrogen peroxide before sulfidization increased the adsorption capacity of xanthate.Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that the modification with hydrogen peroxide increased the contents of S^(2−)and Sn^(2−)species on the cuprite surface.Microflotation tests showed that the recovery of cuprite increased from 61.74%to 83.30%after the modification of the surface with hydrogen peroxide.These results confirm that the modification of the cuprite surface with hydrogen peroxide enhances the sulfidization of cuprite,which in turn improves its flotation.展开更多
To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leach...To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.展开更多
Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo--oil reservoir was found in the Qinglon...Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo--oil reservoir was found in the Qinglong antimony deposit. In view of similar components of gaseous hydrocarbon, we propose that the organic matters observed in inclusions in Qinglong antimony deposit would come from this paleo-oil reservoir. We used the Re-Os dating method to determine the age of the bitumen from this paleo-oil reservoir, and obtained an isochron age of 254.3~2.8 Ma. The age indicates that the oil- generation from source rock occurred in the early Late Permian, earlier than the Sb mineralization age (-148~8.5 Ma) in the Qinglong antimony deposit area. After oil generation from Devonian source rock, first and secondary migration, the crude oil have probably entered into the fractures and pores of volcanic rocks and limestone and formed a paleo-oil reservoir in the western wing of Dachang anticline. As burial process deepened, the crude oil has turned into natural gas, migrates into the core of Dachang anticline and formed a paleo-gas reservoir. The hydrocarbons (including CH4) in the reservoirs can serve as reducing agent to provide the sulfur required for Sb mineralization through thermal chemical reduction of sulfates. Therefore, the formation of oil-gas in the area is a prerequisite for the Sb mineralization in the Qinglong antimony deposit.展开更多
The contents of Fe and Zn in natural sphalerite samples were determined by chemical titration and spectroscopic techniques(portable X-ray fluorescence(P-XRF) spectrometry, electron probe microanalysis with energy disp...The contents of Fe and Zn in natural sphalerite samples were determined by chemical titration and spectroscopic techniques(portable X-ray fluorescence(P-XRF) spectrometry, electron probe microanalysis with energy dispersive spectroscopy(EPMA-EDS), electron probe microanalysis with wavelength dispersive spectroscopy(EPMA-WDS), and time-of-flight secondary ion mass spectrometry(To F-SIMS)). Besides, the distribution of Fe and Zn in sphalerite samples was analyzed by imaging EPMA-WDS and imaging To F-SIMS. The results show that Fe and Zn contents determined by each spectroscopic technique have good linearity with those determined by chemical titration(R^2>0.77), and the R^2 values of Fe are generally greater than those of Zn. The imaging analysis results revealed that Fe and Zn are not uniformly distributed in the sphalerite.展开更多
Although azurite is one of the most important copper oxide minerals,the recovery of this mineral via sulfidization-xanthate flotation is typically unsatisfactory.The present work demonstrated the enhanced sulfidizatio...Although azurite is one of the most important copper oxide minerals,the recovery of this mineral via sulfidization-xanthate flotation is typically unsatisfactory.The present work demonstrated the enhanced sulfidization of azurite surfaces using ammonia phosphate((NH_(4))_(3)PO_(4)) together with Na_(2)S,based on micro-flotation experiments,time-of-flight secondary ion mass spectrometry(ToF-SIMS),X-ray photoelectron spectroscopy(XPS),zeta-potential measurements,contact angle measurements,Fourier-transform infrared(FT-IR)spectroscopy,and ultraviolet-visible(UV-Vis)spectroscopy.Micro-flotation experiments showed that the floatability of azurite was increased following the simultaneous addition of(NH_(4))_(3)PO_(4)and Na_(2)S.ToF-SIMS and XPS analyses demonstrated the formation of a high content of S species on the azurite surface and an increase in the number of Cu(I)species after exposure to(NH_(4))_(3)PO_(4)and Na_(2)S,compared with the azurite-Na_(2)S system.The zeta potential of azurite particles was negatively shifted and the contact angle on the azurite surface was increased with the addition of(NH_(4))_(3)PO_(4)prior to Na_(2)S.These results indicate that treatment with(NH_(4))_(3)PO_(4) enhances the sulfidization of azurite surfaces,which in turn promotes xanthate attachment.FT-IR and UV-Vis analyses confirmed that the addition of(NH_(4))_(3)PO_(4) increased the adsorption of xanthate with reducing the consumption of xanthate during the azurite flotation process.Thus,(NH_(4))_(3)PO_(4) has a beneficial effect on the sulfidization flotation of azurite.展开更多
The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization...The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization of cuprite.Microflotation tests showed that the flotation recovery of pre-oxidized cuprite was nearly25% higher than that of direct sulfidization flotation,which indicates that the cuprite surface activity was enhanced after pre-oxidation by Cu(Ⅰ) species(weak affinity with sulfur ions) transformation to Cu(Ⅱ)species(strong affinity with sulfur ions).Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that pre-oxidation improved cuprite sulfidization and promoted the formation of copper-sulfide species on the cuprite surfaces.The mineral surface stability and thus,xanthate species adsorption on the cuprite surfaces were improved.The surface-adsorption measurements and infrared spectroscopy showed that a large amount of xanthate species was adsorbed onto the sulfidized cuprite surfaces after pre-oxidation,which enhanced the cuprite hydrophobicity and improved the cuprite flotation.展开更多
文摘The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with GPS field collected data in the area of Xiaowan-Dachaoshan Reservoirs of Lancangjiang River cascaded Hydropower Area. Consequently, the land-cover is divided into five subclasses, namely water, paddy field and wetland, bare dryland and sparse shrub, secondary forest and density forest. The result showed that the areas of bare land, upland and secondary forest decreased in 1988-1996, whereas from 1996 to 2000, water body and density forest keep invariability while the areas of paddy field and wetland, bare dryland and sparse scrub increasing and the area of secondary forest decrease; Features of reciprocal transformation between density forest and other type of land-cover had two points, i.e. secondary forest, bare dryland and sparse shrub converted to density forest; and density forest converted to secondary forest and paddy field and wetland. It reflects the dynamic variation of density forest; the area which slope less than 8° and greater than 15° shows bigger variation, however, less change in 8°-15°.
基金supported by the Yunnan Science and Technology Leading Talent Project(No.202305AB350005)National Science Foundation for Young Scientists of China(No.51404118).
文摘The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources.However,studying the flotation of complex solid–liquid systems is extremely difficult,and no systematic theory has been developed to date.In addition,the physical mechanism associated with combining reagents to improve the flotation effect has not been unified,which limits the development of flotation theory and the progress of flotation technology.In this study,we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that de-scribe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface.The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance.The flotation effect can be improved through synergy among multicomponent flotation reagents;its physical essence is the thermodynamic law that as the number of compon-ents of flotation reagents on the mineral surface increases,the surface adsorption entropy change increases,and the Gibbs free energy change of adsorption decreases.According to the results obtained using flotation thermodynamics theory,we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface,increasing the adsorption entropy change of the flotation reagents,decreasing the Gibbs free energy change,and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42162012,42072094)the Key Laboratory of Sanjiang Metallogeny and Resource Exploration and Utilization,Ministry of Natural Resources(Project No.ZRZYBSJSYS2022001).
文摘The Dahongshan Group,situated at the southwestern margin of the Yangtze Block,represents a geological unit characterized by relatively high-grade metamorphism in the region.This paper investigates the garnet-biotite schist from the Laochanghe Formation of the Dahongshan Group,employing an integrated approach that includes petrological analysis,phase equilibrium modeling,and zircon U-Pb dating.The schist is mainly composed of garnet,biotite,plagioclase,quartz,rutile,and ilmenite.Phase equilibrium modeling revealed the peak metamorphic conditions of 8-9 kbar and 635-675°C.By further integrating the prograde metamorphic profile of garnet and geothermobarometric results,a clockwise P-T metamorphic evolution path is constructed,which includes an increase in temperature and pressure during the prograde stage.LA-ICP-MS zircon U-Pb dating and zircon Ti thermometry constrains the post-peak metamorphic age of 831.2±7.2 Ma.Integrated with previously reported results,it is revealed that the southwestern margin of the Yangtze Block experienced a large-scale regional metamorphism during the Neoproterozoic(890-750 Ma),which is related to the collisional orogenic process.This may be associated with the late-stage assembly of the Rodinia supercontinent or with local compression and subduction processes during the breakup of the Rodinia supercontinent.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)Yunnan Major Scientific and Technological Projects(No.202202AG050015)National Natural Science Foundation of China(No.51464029).
文摘Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.
基金This work was financially supported by National Key Research and Development Program of China(Grant No.2022YFC2903903)National Natural Science Foundation of China(Grant No.52304132)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050014).These support is gratefully acknowledged.
文摘The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A series of laboratory tests,numerical simulations and theoretical analyses were carried out in this study to disclose the sliding mechanism of roof rock blocks under lateral disturbance.Firstly,the experiments on trapezoidal key block under various clamping loads and disturbance were conducted,followed by numerical simulations using the fast Lagrangian analysis of continua(FLAC3D).Then,based on the conventional wave propagation model and the classical shear-slip constitutive model,a theoretical model was proposed to capture the relative displacement between blocks and the sliding displacement of the key block.The results indicate that the sliding displacement of the key block increased linearly with the disturbance energy and decreased exponentially with the clamping load when the key block was disturbed to slide(without instability).Meanwhile,when the key block was disturbed to fall,two types of instability process may appear as immediate type or delayed type.In addition,the propagation of stress waves in the block system exhibited obvious low-velocity and lowfrequency characteristics,resulting in the friction reduction effect appearing at the contact interface,which is the essential reason for the sliding of rock blocks.The results can be applied to practical underground engineering and provide valuable guidance for the early detection and prevention of rockfalling disasters.
基金Project(202202AG050010)supported by the Yunnan Major Scientific and Technological Projects,ChinaProject(202103AA080007)supported by the Key R&D Project of Science and Technology Department of Yunnan Province,ChinaProject(NECP2023-06)supported by the Open Project Fund of National Engineering and Technology Research Center for Development&Utilization of Phosphorous Resources,China。
文摘The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.51934003,52334004)Yunnan Innovation Team(No.202105AE 160023)+2 种基金Major Science and Technology Special Project of Yunnan Province,China(No.202102AF080001)Yunnan Major Scientific and Technological Projects,China(No.202202AG050014)Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area,MNR,and Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area.
文摘Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.
基金supported by the National Natural Science Foundation of China (No.52164022).
文摘This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.
基金financially supported by the Yunnan Major Scientific and Technological Projects,China (No.202202AG050015)the National Natural Science Foundation of China (No.51464029)。
文摘The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2009CB421007)the Science and Technology Leading Talents Training Plan Program of Yunnan Province (Grant No.2013HA001)
文摘The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.
基金financially supported by China Postdoctoral Science Foundation (No. 2019M663576)the National Natural Science Foundation of China (No. 51774020)+2 种基金the Key Laboratory of Ministry of Education of China for Efficient Mining and Safety of Metal Mines (No. ustbmslab201801)the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Provincethe Research Start-up Fund for Introduced Talent of Kunming University of Science and Technology (No. KKSY201821024)
文摘Along with slurry concentration and particle density,particle size distribution(PSD)of tailings also exerts a significant influence on the yield stress of cemented paste,a non-Newtonian fluid.In this work,a paste stability coefficient(PSC)was proposed to characterize paste gradation and better reveal its connection to yield stress.This coefficient was proved beneficial to the construction of a unified rheological model,applicable to different materials in different mines,so as to promote the application of rheology in the pipeline transportation of paste.From the results,yield stress showed an exponential growth with increasing PSC,which reflected the proportion of solid particle concentration to the packing density of granular media in a unit volume of slurry,and could represent the properties of both slurry and granular media.It was found that slurry of low PSC contained extensive pores,generally around 20μm,encouraging free flow of water,constituting a relatively low yield stress.In contrast,slurry of high PSC had a compact and quite stable honeycomb structure,with pore sizes generally<5μm,causing the paste to overcome a higher yield stress to flow.
基金funded by the Open Foundation of the Beijing SHRIMP Center (DDC15-016)the Applied Basic Research Program Youth Project of Yunnan Province (2016DF031)the National Basic Research Program of China (2015CB452605)
文摘The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.
基金supported by the National Natural Science Foundation of China (No. 52074138)Basic research project of Yunnan Province (No. 202001AS070030)Open Foundation of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL2020-03)。
文摘In this work,the growth of copper sulfide crystal onto azurite surfaces during sulfurization and its response to flotation are investigated.Filed emission scanning electron microscopy-energy dispersive X-ray spectroscopy(FESEM) and X-ray diffraction(XRD) studies confirmed that the sulfurization of azurite is not limited to the mineral surface,but rather penetrates into the bulk to form covellite crystal(synCuS),creating favorable conditions for the stable adsorption of xanthate and greatly promoting the azurite flotation.Additionally,as demonstrated by X-ray photoelectron spectroscopy(XPS) and time of flight secondary ion mass spectrometry(TOF-SIMS) analyses,a redox reaction occurred during this process,and Cu(Ⅱ) onto the mineral surface was reduced to Cu(Ⅰ).Correspondingly,reduced S^(2-) was oxidized to(S_(2))^(2-),(S_n)^(-2),and even to deeper oxidation state S~0,(S_(x)O_(y))^(n-) and SO_(4)^(2-).Excess sodium sulfide strengthens copper sulfide to form onto the azurite surface,and provides enough raw material for crystal copper sulfide to grow,resulting in the formation of "flake-like" covellite with a better crystallinity.However,the floatability of azurite decreased dramatically under this condition,because the generated massive colloidal copper sulfide in flotation pulp deteriorates the flotation environment,resulting in a decreased effective adsorption of collector onto azurite surfaces.
基金Project funded by Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province, China (No. YNWR-QNBJ-2018-051)。
文摘Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface with hydrogen peroxide before sulfidization increased the adsorption capacity of xanthate.Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that the modification with hydrogen peroxide increased the contents of S^(2−)and Sn^(2−)species on the cuprite surface.Microflotation tests showed that the recovery of cuprite increased from 61.74%to 83.30%after the modification of the surface with hydrogen peroxide.These results confirm that the modification of the cuprite surface with hydrogen peroxide enhances the sulfidization of cuprite,which in turn improves its flotation.
基金Project(51604131)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research Project,ChinaProject(2018T20150055)supported by the Testing and Analyzing Funds of Kunming University of Science and Technology,China
文摘To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.
基金financially supported by Natural Science Foundation of China (No.41362007)The Research of Scientific Base of Typical Metal Mineral from the Ministry of Land and Resources (No.20091107)the Research Project on the Metallogenic Regularity of the Typical Strata Controlled Deposits of National Crisis Mines in Southwest China (No.20089943)
文摘Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo--oil reservoir was found in the Qinglong antimony deposit. In view of similar components of gaseous hydrocarbon, we propose that the organic matters observed in inclusions in Qinglong antimony deposit would come from this paleo-oil reservoir. We used the Re-Os dating method to determine the age of the bitumen from this paleo-oil reservoir, and obtained an isochron age of 254.3~2.8 Ma. The age indicates that the oil- generation from source rock occurred in the early Late Permian, earlier than the Sb mineralization age (-148~8.5 Ma) in the Qinglong antimony deposit area. After oil generation from Devonian source rock, first and secondary migration, the crude oil have probably entered into the fractures and pores of volcanic rocks and limestone and formed a paleo-oil reservoir in the western wing of Dachang anticline. As burial process deepened, the crude oil has turned into natural gas, migrates into the core of Dachang anticline and formed a paleo-gas reservoir. The hydrocarbons (including CH4) in the reservoirs can serve as reducing agent to provide the sulfur required for Sb mineralization through thermal chemical reduction of sulfates. Therefore, the formation of oil-gas in the area is a prerequisite for the Sb mineralization in the Qinglong antimony deposit.
基金Projects(51764022,51404119)supported by the National Natural Science Foundation of ChinaProject(161046)supported by Fok Ying Tong Education Foundation,ChinaProject(2018M632810)supported by China Postdoctoral Science Foundation。
文摘The contents of Fe and Zn in natural sphalerite samples were determined by chemical titration and spectroscopic techniques(portable X-ray fluorescence(P-XRF) spectrometry, electron probe microanalysis with energy dispersive spectroscopy(EPMA-EDS), electron probe microanalysis with wavelength dispersive spectroscopy(EPMA-WDS), and time-of-flight secondary ion mass spectrometry(To F-SIMS)). Besides, the distribution of Fe and Zn in sphalerite samples was analyzed by imaging EPMA-WDS and imaging To F-SIMS. The results show that Fe and Zn contents determined by each spectroscopic technique have good linearity with those determined by chemical titration(R^2>0.77), and the R^2 values of Fe are generally greater than those of Zn. The imaging analysis results revealed that Fe and Zn are not uniformly distributed in the sphalerite.
基金supported by the Yunnan Fundamental Research Projects,China(No.202101BE070001-009)Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province,China(No.YNWR-QNBJ-2018-051).
文摘Although azurite is one of the most important copper oxide minerals,the recovery of this mineral via sulfidization-xanthate flotation is typically unsatisfactory.The present work demonstrated the enhanced sulfidization of azurite surfaces using ammonia phosphate((NH_(4))_(3)PO_(4)) together with Na_(2)S,based on micro-flotation experiments,time-of-flight secondary ion mass spectrometry(ToF-SIMS),X-ray photoelectron spectroscopy(XPS),zeta-potential measurements,contact angle measurements,Fourier-transform infrared(FT-IR)spectroscopy,and ultraviolet-visible(UV-Vis)spectroscopy.Micro-flotation experiments showed that the floatability of azurite was increased following the simultaneous addition of(NH_(4))_(3)PO_(4)and Na_(2)S.ToF-SIMS and XPS analyses demonstrated the formation of a high content of S species on the azurite surface and an increase in the number of Cu(I)species after exposure to(NH_(4))_(3)PO_(4)and Na_(2)S,compared with the azurite-Na_(2)S system.The zeta potential of azurite particles was negatively shifted and the contact angle on the azurite surface was increased with the addition of(NH_(4))_(3)PO_(4)prior to Na_(2)S.These results indicate that treatment with(NH_(4))_(3)PO_(4) enhances the sulfidization of azurite surfaces,which in turn promotes xanthate attachment.FT-IR and UV-Vis analyses confirmed that the addition of(NH_(4))_(3)PO_(4) increased the adsorption of xanthate with reducing the consumption of xanthate during the azurite flotation process.Thus,(NH_(4))_(3)PO_(4) has a beneficial effect on the sulfidization flotation of azurite.
基金the Project funded by Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province (Grant No. YNWR-QNBJ-2018-051)。
文摘The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization of cuprite.Microflotation tests showed that the flotation recovery of pre-oxidized cuprite was nearly25% higher than that of direct sulfidization flotation,which indicates that the cuprite surface activity was enhanced after pre-oxidation by Cu(Ⅰ) species(weak affinity with sulfur ions) transformation to Cu(Ⅱ)species(strong affinity with sulfur ions).Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that pre-oxidation improved cuprite sulfidization and promoted the formation of copper-sulfide species on the cuprite surfaces.The mineral surface stability and thus,xanthate species adsorption on the cuprite surfaces were improved.The surface-adsorption measurements and infrared spectroscopy showed that a large amount of xanthate species was adsorbed onto the sulfidized cuprite surfaces after pre-oxidation,which enhanced the cuprite hydrophobicity and improved the cuprite flotation.