One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developi...One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developing a Monte Carlo simulation to selection the optimum mining method by using effective and major criteria and at the same time,taking subjective judgments of decision makers into consideration.Proposed approach is based on the combination of Monte Carlo simulation with conventional Analytic Hierarchy Process(AHP).Monte Carlo simulation is used to determine the confdence level of each alternative’s score,is calculated by AHP,with the respect to the variance of decision makers’opinion.The proposed method is applied for Jajarm Bauxite Mine in Iran and eventually the most appropriate mining methods for this mine are ranked.展开更多
Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution ...Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.展开更多
The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the...The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.展开更多
The main purpose of blasting in open pit mines is to produce the feed for crushing stage with the optimum dimensions from in situ rocks. The size distribution of muck pile indicates the efficiency of blasting pattern ...The main purpose of blasting in open pit mines is to produce the feed for crushing stage with the optimum dimensions from in situ rocks. The size distribution of muck pile indicates the efficiency of blasting pattern to reach the required optimum sizes. Nevertheless, there is no mature model to predict fragmentation distribution to date that can be used in various open pit mines. Therefore, a new framework to evaluate and predict fragmentation distribution is presented based on the image analysis approach. For this purpose, the data collected from Jajarm bauxite mine in Iran were used as the sources in this study. The image analysis process was performed by Split-Desktop software to find out fragmentation distribution, uniformity index and average size of the fragmented rocks. Then, two different approaches including the multivariate regression method and the decision-making trial and evaluation laboratory(DEMATEL) technique were incorporated to develop new models of the uniformity index and the average size to improve the Rosin-Rammler function. The performances of the proposed models were evaluated in four blasting operation sites. The results obtained indicate that the regression model possesses a better performance in prediction of the uniformity index and the average size and subsequently the fragmentation distribution in comparison with DEMATEL and conventional Rosin-Rammler models.展开更多
Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The typ...Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The type of rock mass consisting of an interbedding of strong and weak layers poses difficulties and uncertainties for determining the RMR. For this, the present paper uses the concept of rock bolt supporting factor(RSF) for modification of RMR system to be used in such rock mass types. The proposed method also demonstrates the importance of rock bolting practice in such rock masses. The geological parameters of the Shemshak Formation of the Alborz Tunnel in Iran are used as case examples for development of the theoretical approach.展开更多
The effect of calcite and dolomite on the oxidation of pyrite was studied using batch-leaching experiments complemented with chemical modeling, solution analysis and solid characterization techniques. Leaching tests c...The effect of calcite and dolomite on the oxidation of pyrite was studied using batch-leaching experiments complemented with chemical modeling, solution analysis and solid characterization techniques. Leaching tests conducted at 80℃ and p(O2)=1.013×105 Pa and pH〉13 showed that pyrite alkaline oxidation rate decreased in the presence of both calcite and dolomite, while more detrimental effect was observed in the case of calcite. FE-SEM/EDS analysis exhibited a surface layer containing Ca(in the case of calcite) and Mg(in the case of dolomite) on the pyrite surface, which justified the slowdown in pyrite leaching rate. This surface layer was formed due to partial dissolution of carbonate minerals, which was affected dominantly by the p H and temperature of the leaching solution based on the chemical modeling data. The surface layer was characterized as Ca or Mg hydroxide using XRD and FTIR analysis. It was also found that this layer was thin and continuous in the case of calcite while it was thick and discontinuous in the presence of dolomite.展开更多
Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applicat...Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applications.Studies show that the application of statistical parameters alone may not produce a sufficiently reliable estimation of the JRC values.Therefore,alternative data-driven methods are proposed to assess the JRC values.In this study,Gaussian process(GP),K-star,random forest(RF),and extreme gradient boosting(XGBoost)models are employed,and their performance and accuracy are compared with those of benchmark regression formula(i.e.Z2,Rp,and SDi)for the JRC estimation.To analyze the models’performance,112 rock joint profile datasets having eight common statistical parameters(R_(ave),R_(max),SD_(h),iave,SD_(i),Z_(2),R_(p),and SF)and one output variable(JRC)are utilized,of which 89 and 23 datasets are used for training and validation of models,respectively.The interpretability of the developed XGBoost model is presented in terms of feature importance ranking,partial dependence plots(PDPs),feature interaction,and local interpretable model-agnostic explanations(LIME)techniques.Analyses of results show that machine learning models demonstrate higher accuracy and precision for estimating JRC values compared with the benchmark empirical equations,indicating the generalization ability of the data-driven models in better estimation accuracy.展开更多
Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important...Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important to minimize its probability.Reliability is one of the most effcient and important method to study safe operation probability of hydraulic systems.In this research,the reliability of hydraulic system of four rotary drilling machines in Sarcheshmeh Copper Mine in Iran has been analyzed.The data analysis shows that the time between failures(TBF)of Machines A and C obey the Weibull(2P)and Weibull(3P)distribution,respectively.Also,the TBF of Machines B and D obey the lognormal distribution.With regard to reliability plots of hydraulic systems,preventive reliability-based maintenance time intervals for 80%reliability levels for machines in this system are 10 h.展开更多
This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flot...This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flotation of chalcopyrite is not depressed completely when the pulp potential is low, even at high concentrations of sodium sulfide, i.e., 10-1-10-2 mol/L. However, a partial and controlled oxidation of pulp does enhance the effectiveness of sodium sulfide on the depression of chalcopyrite. Characterization of the chalcopyrite particle surface by X-ray photoelectron spectroscopy allowed the identification of hydrophilic and hydrophobic surface species, which are responsible for the depression and flotation of chalcopyrite. Changes in pulp potential were found to be an effective float controlling parameter, by which Na2S can be used to initiate or depress the flotation behavior of chalcopyrite.展开更多
The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on th...The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.展开更多
In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings o...In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings of−600 m level in Coal Mine“6.13”,Democratic People's Republic of Korea.The displacement components used for back analysis are the crown settlement and sidewalls convergence monitored at the end of the openings excavation,and the final closures predicted by GVM.The non-linear relation between displacements and back analysis parameters was obtained by artificial neural network(ANN)and Burger-creep viscoplastic(CVISC)model of FLAC3D.Then,the optimal parameters were determined for rock mass surrounding tunnel by genetic algorithm(GA)with both groups of measured displacements at the end of the final excavation and closures predicted by GVM.The maximum absolute error(MAE)and standard deviation(Std)between calculated displacements by numerical simulation with back analysis parameters and in situ ones were less than 6 and 2 mm,respectively.Therefore,it was found that the proposed method could be successfully applied to determining design parameters and stability for tunnels and underground cavities,as well as mine openings and stopes.展开更多
Selection of crusher required a great deal of design based on the mining plan and operation input. Selection of the best primary crusher from all of available primary crushers is a Multi-Criterion Decision Making (M...Selection of crusher required a great deal of design based on the mining plan and operation input. Selection of the best primary crusher from all of available primary crushers is a Multi-Criterion Decision Making (MCDM) problem, in this paper, the Analytical Hierarchy Process (AHP) method was used to selection of the best primary crusher for Golegohar Iron Mine in Iran. For this reason, gyratory, double toggle jaw, single toggle jaw, high speed roll crusher, low speed sizer, impactor, hammer mill and feeder breaker crushers were considered as alternatives and capacity, feed size, product size, rock compressive strength, abrasion index and mobility of crusher were considered as criteria. As a result of our study, the gyvratory crusher was offered as the best primary crusher for the studied mine.展开更多
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by...During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.展开更多
In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression an...In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.展开更多
Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usuall...Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument, will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility to place the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and the deformable alluvial foundation that this leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by alluvial foundation. To achieve this goal, the settlement of dams was simulated by using finite difference method with FLAC3D software and then the modeling results were compared with reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and Curve Fitting Toolbox, a new criteria for the settlement based on elasticity modulus, cohesion, friction angle, density of earth dam and alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings and the error rate in reading IS instrument can be greatly reduced.展开更多
Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of t...Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.展开更多
Iran is located on a silver, lead, and zinc belt and according to the latest studies holds 11 million tons of lead, zinc, and silver stones which constitute 4 percent of global resources. Considering that mineral mate...Iran is located on a silver, lead, and zinc belt and according to the latest studies holds 11 million tons of lead, zinc, and silver stones which constitute 4 percent of global resources. Considering that mineral materials are explored in an uncertain space, exploration investment risk is an inseparable part of these activities. The important fact is to minimize the effect of this undesired factor in exploration. To achieve this, it is required that exploration activities and withdrawals are performed in a certain framework in which risk minimization is considered. Using mineral potential modelling for determining promising zones which should be taken into consideration in more detailed stages could make achieving the purpose possibly. This work is aimed at applying fuzzy neural network and TOPSIS methods simultaneously in order to explore zinc and lead resources. In this article, geological, telemetry, geophysics, and geochemistry data is integrated using fuzzy-neural network (neuro fuzzy) and using TOPSIS method rating for lead and zinc ore deposit potential mapping in Isfahan-Khomein strip which has been introduced as one of zinc and leads mineral scopes in Iran. This area which is composed of several zinc and lead ore deposits has been considered as the target area. Fuzzy integration results of zinc and lead mineralization witness layers confirm the relatively high potential of lead and zinc mineralization in this region having a northwest-southeast trend and involving more than 90 percent of the known indices and ore deposits of the region. In this research, it was shown that the results of TOPSIS-Neuro-Fuzzy integrated model (a combination of neural network and fuzzy logic) have increased the resolution of talented areas from the areas with no mineralization potential in comparison with the fuzzy method individually.展开更多
The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite un...The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy(AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.展开更多
One of the contaminants in coal is sulphur. The adverse impact of sulfur on coal, such as environmental pollution, degradation of steel quality, and reduction of coal’s thermal value, has led to the attention of sulf...One of the contaminants in coal is sulphur. The adverse impact of sulfur on coal, such as environmental pollution, degradation of steel quality, and reduction of coal’s thermal value, has led to the attention of sulfur separation methods in recent decades. Leaching (chemical dissolution) is one of the best methods for desulfurising coal, reducing sulfur in coal. In this study, hydrogen peroxide as an oxidising agent on sulfuric acid yield in reducing sulfur types of coal and chemical structure and the organic texture of high sulfur coal was investigated. The experiments were designed using a three-level response surface methodology with four duplicate points and 27 experiments. The independent variables studied were temperature, time, stirring speed and ratio of sulfuric acid to hydrogen peroxide. Dependent variables included reduction percentage of total, pyritic and organic sulfur. This study showed that 99.99% of total sulfur, 30.11% of pyritic sulfur and 69.08% of organic sulfur were reduced. These values were obtained at a temperature of 60°C, time 120 min, stirring speed 200 rpm and 3:1 ratio of sulfuric acid to hydrogen peroxide. Significant changes were observed by infrared spectroscopy (FTIR) of the coal structure before and after desulphurisation. On the other hand, the studies showed no specific changes in the bonds related to the organic coal matrix. The results showed that this method could be used as a secure process for removing inorganic and organic sulfur without destroying the organic coal matrix.展开更多
Merapi volcano located in central Java, Indonesia,is one of the most active stratovolcanoes in the world. Many Earth scientists have conducted studies on this volcano using various methods. The geological features aro...Merapi volcano located in central Java, Indonesia,is one of the most active stratovolcanoes in the world. Many Earth scientists have conducted studies on this volcano using various methods. The geological features around Merapi are very attractive to be investigated because they have been formed by a complex tectonic process and volcanic activities since tens of millions of years ago. The southern mountain range, Kendeng basin and Opak active fault located around the study area resulted from these processes. DOMERAPI project was conducted to understand deep magma sources of the Merapi volcano comprehensively. The DOMERAPI network was running from October 2013 to mid-April 2015 by deploying 46 broad-band seismometers around the volcano. Several steps, i.e., earthquake event identification,arrival time picking of P and S waves, hypocenter determination and hypocenter relocation, were carried out in this study. We used Geiger's method(Geiger 1912) for hypocenter determination and double-difference method for hypocenter relocation. The relocation result will be used to carry out seismic tomographic imaging of structures beneath the Merapi volcano and its surroundings. For the hypocenter determination, the DOMERAPI data were processed simultaneously with those from the Agency for Meteorology, Climatology and Geophysics(BMKG) seismic network in order to minimize the azimuthal gap. We found that the majority of earthquakes occurred outside the DOMERAPI network. There are 464 and 399 earthquakes obtained before and after hypocenter relocation, respectively. The hypocenter relocation result successfully detects some tectonic features, such as a nearly vertical cluster of events indicating a subduction-related backthrust to the south of central Java and a cluster of events to the east of Opak fault suggesting that the fault has an eastward dip.展开更多
文摘One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developing a Monte Carlo simulation to selection the optimum mining method by using effective and major criteria and at the same time,taking subjective judgments of decision makers into consideration.Proposed approach is based on the combination of Monte Carlo simulation with conventional Analytic Hierarchy Process(AHP).Monte Carlo simulation is used to determine the confdence level of each alternative’s score,is calculated by AHP,with the respect to the variance of decision makers’opinion.The proposed method is applied for Jajarm Bauxite Mine in Iran and eventually the most appropriate mining methods for this mine are ranked.
基金This work was supported by the National Natural Science Foundation of China,Young Scientists Fund(No.51804209)NSFC-Shanxi Joint Fund for Coal-Based Low-Carbon Technology(No.U1710258)Shanxi Applied Basic Research Programs,Science and Technology Foundation for Youths(No.201801D221363).THX.
文摘Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.
文摘The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.
文摘The main purpose of blasting in open pit mines is to produce the feed for crushing stage with the optimum dimensions from in situ rocks. The size distribution of muck pile indicates the efficiency of blasting pattern to reach the required optimum sizes. Nevertheless, there is no mature model to predict fragmentation distribution to date that can be used in various open pit mines. Therefore, a new framework to evaluate and predict fragmentation distribution is presented based on the image analysis approach. For this purpose, the data collected from Jajarm bauxite mine in Iran were used as the sources in this study. The image analysis process was performed by Split-Desktop software to find out fragmentation distribution, uniformity index and average size of the fragmented rocks. Then, two different approaches including the multivariate regression method and the decision-making trial and evaluation laboratory(DEMATEL) technique were incorporated to develop new models of the uniformity index and the average size to improve the Rosin-Rammler function. The performances of the proposed models were evaluated in four blasting operation sites. The results obtained indicate that the regression model possesses a better performance in prediction of the uniformity index and the average size and subsequently the fragmentation distribution in comparison with DEMATEL and conventional Rosin-Rammler models.
文摘Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The type of rock mass consisting of an interbedding of strong and weak layers poses difficulties and uncertainties for determining the RMR. For this, the present paper uses the concept of rock bolt supporting factor(RSF) for modification of RMR system to be used in such rock mass types. The proposed method also demonstrates the importance of rock bolting practice in such rock masses. The geological parameters of the Shemshak Formation of the Alborz Tunnel in Iran are used as case examples for development of the theoretical approach.
基金the support of IMIDRO,Iranian Mines & Mining Industries Development & Renovation,for providing the financial support to carry out this research
文摘The effect of calcite and dolomite on the oxidation of pyrite was studied using batch-leaching experiments complemented with chemical modeling, solution analysis and solid characterization techniques. Leaching tests conducted at 80℃ and p(O2)=1.013×105 Pa and pH〉13 showed that pyrite alkaline oxidation rate decreased in the presence of both calcite and dolomite, while more detrimental effect was observed in the case of calcite. FE-SEM/EDS analysis exhibited a surface layer containing Ca(in the case of calcite) and Mg(in the case of dolomite) on the pyrite surface, which justified the slowdown in pyrite leaching rate. This surface layer was formed due to partial dissolution of carbonate minerals, which was affected dominantly by the p H and temperature of the leaching solution based on the chemical modeling data. The surface layer was characterized as Ca or Mg hydroxide using XRD and FTIR analysis. It was also found that this layer was thin and continuous in the case of calcite while it was thick and discontinuous in the presence of dolomite.
文摘Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applications.Studies show that the application of statistical parameters alone may not produce a sufficiently reliable estimation of the JRC values.Therefore,alternative data-driven methods are proposed to assess the JRC values.In this study,Gaussian process(GP),K-star,random forest(RF),and extreme gradient boosting(XGBoost)models are employed,and their performance and accuracy are compared with those of benchmark regression formula(i.e.Z2,Rp,and SDi)for the JRC estimation.To analyze the models’performance,112 rock joint profile datasets having eight common statistical parameters(R_(ave),R_(max),SD_(h),iave,SD_(i),Z_(2),R_(p),and SF)and one output variable(JRC)are utilized,of which 89 and 23 datasets are used for training and validation of models,respectively.The interpretability of the developed XGBoost model is presented in terms of feature importance ranking,partial dependence plots(PDPs),feature interaction,and local interpretable model-agnostic explanations(LIME)techniques.Analyses of results show that machine learning models demonstrate higher accuracy and precision for estimating JRC values compared with the benchmark empirical equations,indicating the generalization ability of the data-driven models in better estimation accuracy.
基金the R&D center of Iranian National Copper Company for its financial support
文摘Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important to minimize its probability.Reliability is one of the most effcient and important method to study safe operation probability of hydraulic systems.In this research,the reliability of hydraulic system of four rotary drilling machines in Sarcheshmeh Copper Mine in Iran has been analyzed.The data analysis shows that the time between failures(TBF)of Machines A and C obey the Weibull(2P)and Weibull(3P)distribution,respectively.Also,the TBF of Machines B and D obey the lognormal distribution.With regard to reliability plots of hydraulic systems,preventive reliability-based maintenance time intervals for 80%reliability levels for machines in this system are 10 h.
基金Tarbiat Modares University and the Sarcheshmeh Copper Complex of Kerman for their financial support
文摘This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flotation of chalcopyrite is not depressed completely when the pulp potential is low, even at high concentrations of sodium sulfide, i.e., 10-1-10-2 mol/L. However, a partial and controlled oxidation of pulp does enhance the effectiveness of sodium sulfide on the depression of chalcopyrite. Characterization of the chalcopyrite particle surface by X-ray photoelectron spectroscopy allowed the identification of hydrophilic and hydrophobic surface species, which are responsible for the depression and flotation of chalcopyrite. Changes in pulp potential were found to be an effective float controlling parameter, by which Na2S can be used to initiate or depress the flotation behavior of chalcopyrite.
基金Project(2015CB060200) supported by the National Basic Research Program of ChinaProject(41772313) supported by the National Natural Science Foundation of ChinaProject(2018zzts736) supported by the Independent Innovation Exploration Project of Central South University,China
文摘The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.
基金Project(32-41)supported by the National Science and Technical Development Foundation of DPR of Korea。
文摘In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings of−600 m level in Coal Mine“6.13”,Democratic People's Republic of Korea.The displacement components used for back analysis are the crown settlement and sidewalls convergence monitored at the end of the openings excavation,and the final closures predicted by GVM.The non-linear relation between displacements and back analysis parameters was obtained by artificial neural network(ANN)and Burger-creep viscoplastic(CVISC)model of FLAC3D.Then,the optimal parameters were determined for rock mass surrounding tunnel by genetic algorithm(GA)with both groups of measured displacements at the end of the final excavation and closures predicted by GVM.The maximum absolute error(MAE)and standard deviation(Std)between calculated displacements by numerical simulation with back analysis parameters and in situ ones were less than 6 and 2 mm,respectively.Therefore,it was found that the proposed method could be successfully applied to determining design parameters and stability for tunnels and underground cavities,as well as mine openings and stopes.
文摘Selection of crusher required a great deal of design based on the mining plan and operation input. Selection of the best primary crusher from all of available primary crushers is a Multi-Criterion Decision Making (MCDM) problem, in this paper, the Analytical Hierarchy Process (AHP) method was used to selection of the best primary crusher for Golegohar Iron Mine in Iran. For this reason, gyratory, double toggle jaw, single toggle jaw, high speed roll crusher, low speed sizer, impactor, hammer mill and feeder breaker crushers were considered as alternatives and capacity, feed size, product size, rock compressive strength, abrasion index and mobility of crusher were considered as criteria. As a result of our study, the gyvratory crusher was offered as the best primary crusher for the studied mine.
文摘During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.
文摘In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.
文摘Careful monitoring in the earth dams, to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument, will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility to place the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and the deformable alluvial foundation that this leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by alluvial foundation. To achieve this goal, the settlement of dams was simulated by using finite difference method with FLAC3D software and then the modeling results were compared with reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and Curve Fitting Toolbox, a new criteria for the settlement based on elasticity modulus, cohesion, friction angle, density of earth dam and alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings and the error rate in reading IS instrument can be greatly reduced.
文摘Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.
文摘Iran is located on a silver, lead, and zinc belt and according to the latest studies holds 11 million tons of lead, zinc, and silver stones which constitute 4 percent of global resources. Considering that mineral materials are explored in an uncertain space, exploration investment risk is an inseparable part of these activities. The important fact is to minimize the effect of this undesired factor in exploration. To achieve this, it is required that exploration activities and withdrawals are performed in a certain framework in which risk minimization is considered. Using mineral potential modelling for determining promising zones which should be taken into consideration in more detailed stages could make achieving the purpose possibly. This work is aimed at applying fuzzy neural network and TOPSIS methods simultaneously in order to explore zinc and lead resources. In this article, geological, telemetry, geophysics, and geochemistry data is integrated using fuzzy-neural network (neuro fuzzy) and using TOPSIS method rating for lead and zinc ore deposit potential mapping in Isfahan-Khomein strip which has been introduced as one of zinc and leads mineral scopes in Iran. This area which is composed of several zinc and lead ore deposits has been considered as the target area. Fuzzy integration results of zinc and lead mineralization witness layers confirm the relatively high potential of lead and zinc mineralization in this region having a northwest-southeast trend and involving more than 90 percent of the known indices and ore deposits of the region. In this research, it was shown that the results of TOPSIS-Neuro-Fuzzy integrated model (a combination of neural network and fuzzy logic) have increased the resolution of talented areas from the areas with no mineralization potential in comparison with the fuzzy method individually.
基金Project(51464029)supported by the National Natural Science Foundation of ChinaProject(2014M562343)supported by China Postdoctoral Science FoundationProject(KKSY201421110)supported by the Scholar Development Project of Yunnan Province,China
文摘The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy(AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.
文摘One of the contaminants in coal is sulphur. The adverse impact of sulfur on coal, such as environmental pollution, degradation of steel quality, and reduction of coal’s thermal value, has led to the attention of sulfur separation methods in recent decades. Leaching (chemical dissolution) is one of the best methods for desulfurising coal, reducing sulfur in coal. In this study, hydrogen peroxide as an oxidising agent on sulfuric acid yield in reducing sulfur types of coal and chemical structure and the organic texture of high sulfur coal was investigated. The experiments were designed using a three-level response surface methodology with four duplicate points and 27 experiments. The independent variables studied were temperature, time, stirring speed and ratio of sulfuric acid to hydrogen peroxide. Dependent variables included reduction percentage of total, pyritic and organic sulfur. This study showed that 99.99% of total sulfur, 30.11% of pyritic sulfur and 69.08% of organic sulfur were reduced. These values were obtained at a temperature of 60°C, time 120 min, stirring speed 200 rpm and 3:1 ratio of sulfuric acid to hydrogen peroxide. Significant changes were observed by infrared spectroscopy (FTIR) of the coal structure before and after desulphurisation. On the other hand, the studies showed no specific changes in the bonds related to the organic coal matrix. The results showed that this method could be used as a secure process for removing inorganic and organic sulfur without destroying the organic coal matrix.
基金Institut de Recherche pour le Développement (IRD), France, for funding the DOMERAPI projectCenter for Volcanology and Geohazard Mitigation as the main counterpart of the DOMERAPI project in Indonesia+1 种基金supported in part by the Indonesian Directorate General of Higher Education (DIKTI) research funding 2015–2016the Institut Teknologi Bandung (ITB) through a WCU research Grant 2016 awarded to SW
文摘Merapi volcano located in central Java, Indonesia,is one of the most active stratovolcanoes in the world. Many Earth scientists have conducted studies on this volcano using various methods. The geological features around Merapi are very attractive to be investigated because they have been formed by a complex tectonic process and volcanic activities since tens of millions of years ago. The southern mountain range, Kendeng basin and Opak active fault located around the study area resulted from these processes. DOMERAPI project was conducted to understand deep magma sources of the Merapi volcano comprehensively. The DOMERAPI network was running from October 2013 to mid-April 2015 by deploying 46 broad-band seismometers around the volcano. Several steps, i.e., earthquake event identification,arrival time picking of P and S waves, hypocenter determination and hypocenter relocation, were carried out in this study. We used Geiger's method(Geiger 1912) for hypocenter determination and double-difference method for hypocenter relocation. The relocation result will be used to carry out seismic tomographic imaging of structures beneath the Merapi volcano and its surroundings. For the hypocenter determination, the DOMERAPI data were processed simultaneously with those from the Agency for Meteorology, Climatology and Geophysics(BMKG) seismic network in order to minimize the azimuthal gap. We found that the majority of earthquakes occurred outside the DOMERAPI network. There are 464 and 399 earthquakes obtained before and after hypocenter relocation, respectively. The hypocenter relocation result successfully detects some tectonic features, such as a nearly vertical cluster of events indicating a subduction-related backthrust to the south of central Java and a cluster of events to the east of Opak fault suggesting that the fault has an eastward dip.