期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Coupled Torsional and Transverse Vibrations of the Marine Propulsion Shaft System
1
作者 Akile Nese Halilbese Cong Zhang Osman Azmi Ozsoysal 《Journal of Marine Science and Application》 CSCD 2021年第2期201-212,共12页
In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified versio... In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified version of the Jeffcott rotor model.The equation of motion describing the harmonic vibrations of the system was obtained using the Euler-Lagrange equations for the associated energy functional.Experiments considering different rotation speeds and axial loads acting on the propulsion shaft system were performed to verify the numerical model.The effects of system parameters such as shaft length and diameter,stiffness and damping coefficients,and cross-section eccentricity were also studied.The cross-section eccentricity increased the displacement response,yet coupled vibrations were not initially observed.With the increase in the eccentricity,the interaction between two vibration modes became apparent,and the agreement between numerical predictions and experimental measurements improved.Given the results,the modified version of the Jeffcott rotor model can represent the coupled torsional-transverse vibration of propulsion shaft systems. 展开更多
关键词 Coupled torsional-transverse vibrations Forced vibrations Marine propulsion shaft system Cross-section eccentricity Jeffcott rotor Coupled vibration in rotor system
下载PDF
Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology 被引量:1
2
作者 Koray Korkmaz Bahar Tokur 《Food Bioscience》 SCIE 2022年第1期332-339,共8页
The recycling of waste from food processing is an important industrial procedure for obtaining protein sources with high added value.In this study,trout(Onchorynchus mykiss),anchovy(Engraulis encrasicolus),and whiting... The recycling of waste from food processing is an important industrial procedure for obtaining protein sources with high added value.In this study,trout(Onchorynchus mykiss),anchovy(Engraulis encrasicolus),and whiting(Merlangius merlangus)wastes were hydrolyzed.The hydrolyzation procedure was investigated under the optimum predicted conditions defined by time,temperature,and enzyme ratio(E/S)using alkaline protease(pH 8),Protamex(pH 7),and Flavourzyme(pH 7).The hydrolysis conditions that showed the best degree of hydrolysis(DH%)were optimized using response surface methodology(RSM)with the central composite design(CCD)and Box-Behnken design(BBD)models.The effects of three independent variables,temperature(40-60℃),time(1-8 h),and enzyme concentrations(1-2%),were examined for model optimization.It was determined that the DH%varies between 50.92%and 74.30% according to the type of fish waste and enzyme.The highest degree of hydrolysis was observed from trout waste(74.30%)and the lowest degree from whiting waste(50.92%)with Flavourenzyme.From this study,it has been shown that different degrees of hydrolysis and protein recovery can be obtained,depending on fish species,waste composition,enzyme type,and hydrolysis method. 展开更多
关键词 Fish protein hydrolysate OPTIMIZATION Degree of hydrolysis Protein recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部