To improve the processing quality of potatoes,phosphate buffer extract(PBE),50%ethanol(E50),and aqueous extract(AE)of tartary buckwheat seedlings were evaluated for their ability to inhibit the enzymatic browning of p...To improve the processing quality of potatoes,phosphate buffer extract(PBE),50%ethanol(E50),and aqueous extract(AE)of tartary buckwheat seedlings were evaluated for their ability to inhibit the enzymatic browning of potatoes.The results suggest that all extracts of tartary buckwheat seedlings exert significant inhibitory effects on the polyphenol oxidase(PPO)activity in potatoes.The relative concentrations required for a 50%reduction in the PPO activity(IC50)were 0.21,0.28 and 0.41 mg mL^-1,for PBE,E50 and AE,respectively.The strongest inhibitory activity was observed for PBE,followed by E50 and AE.Four flavone compounds in the PBE of tartary buckwheat seedlings(i.e.,rutin,kaempferol-3-O-rutinoside,quercetin,and kaempferol)were identified by high-performance liquid chromatography.These compounds were subsequently evaluated for their roles in the inhibition of PPO from potatoes using a model system.The results indicated that rutin exhibited the highest inhibition rate on the PPO of potato.A synergistic inhibitory effect was observed by mixing rutin,kaempferol-3-Orutinoside,quercetin,and proteins.The inhibitory patterns of rutin,kaempferol-3-O-rutinoside,and quercetin on the enzyme were noncompetitive and reversible,with inhibitory constants of 0.12,0.31,and 0.40 mg mL^-1,respectively.Flavonoids from tartary buckwheat seedlings may exhibit a common mechanism with phenolic compounds,involving the blockage of the reaction of oxygen with PPO leading to the inhibition of the enzymes involved in browning.Based on these results,extracts of tartary buckwheat seedlings can be used as potent natural inhibitors.展开更多
Near infrared spectrometer technology under a wavelength range of 918-1045 nm was used to rapidly detect paddy rice that was stored at 5℃, 15℃ and 25℃. A total of 121 paddy rice samples were collected from artifici...Near infrared spectrometer technology under a wavelength range of 918-1045 nm was used to rapidly detect paddy rice that was stored at 5℃, 15℃ and 25℃. A total of 121 paddy rice samples were collected from artificial infection with moulds to build the calibration models to calculate the total number colony of moulds based on the principal component regression method and multiple linear regression method. The results of statistical analysis indicated that multiple linear regression method was applicable to the detection of the total number colony of moulds. The correlation of calibration data set was 0.943. The correlation of prediction data set was 0.897. Therefore, the result showed that near infrared spectroscopy could be a useful instrumental method for determining the total number colony of moulds in paddy rice. The near infrared spectroscopy methodology could be applied for monitoring mould contamination in postharvest paddy rice during storage and might become a powerful tool for monitoring the safety of the grain.展开更多
Hyperlipidemia is a frequent metabolic disorder that is closely associated with diet. It is believed that brown rice, containing the outer bran layer and germ, is beneficial for the remission of hyperlipidemia. This s...Hyperlipidemia is a frequent metabolic disorder that is closely associated with diet. It is believed that brown rice, containing the outer bran layer and germ, is beneficial for the remission of hyperlipidemia. This study established a rat model of hyperlipidemia by feeding a high-fat diet. The hypolipidemic potential of germinated brown rice(Gbrown) and germinated black rice(a germinated black-pigmented brown rice, Gblack) were explored in the model rats, mainly in the aspects of blood lipids, lipases, apolipoproteins, and inflammation. The gut microbiota in hyperlipidemic rats receiving diverse dietary interventions was determined by 16S rDNA sequencing. The results showed that the intervention of Gbrown/Gblack alleviated the hyperlipidemia in rats, evidenced by decreased TC, TG, LDL-C, and apolipoprotein B, and increased HDL-C, HL, LPL, LCAT, and apolipoprotein A1. Gbrown/Gblack also weakened the inflammation in hyperlipidemia rats, evidenced by decreased TNF-α, IL-6, and ET-1. In addition, 16S rDNA sequencing revealed that the diet of Gbrown/Gblack elevated the abundance and diversity of gut microbiota in hyperlipidemia rats. At the phylum level, Gbrown/Gblack decreased Firmicutes, increased Bacteroidetes, and decreased the F/B ratio in hyperlipidemia rats. At the genus level, Gbrown/Gblack decreased Streptococcus and increased Ruminococcus and Allobaculum in hyperlipidemia rats. Some differential microbial genera relating to lipid metabolism were also determined, such as the Lachnospira and Ruminococcus in the Gblack group, and the Phascolarctobacterium, Dorea, Turicibacter, and Escherichia-Shigella in the Gbrown group. Notably, the beneficial effect of Gblack was stronger than Gbrown. To sum up, the dietary interventions of Gbrown/Gblack contributed to the remission of hyperlipidemia by alleviating the dysbiosis of gut microbiota.展开更多
Germination and processing are always accompanied by significant changes in the metabolic compositions of rice. In this study, polished rice(rice), brown rice, wet germinated brown rice(WGBR), high temperature and pre...Germination and processing are always accompanied by significant changes in the metabolic compositions of rice. In this study, polished rice(rice), brown rice, wet germinated brown rice(WGBR), high temperature and pressure-treated WGBR(WGBR-HTP), and low temperature-treated WGBR(WGBR-T18) were enrolled. An untargeted metabolomics assay isolated 6 122 positive ions and 4 224 negative ions(multiple difference ≥1.2 or ≤0.8333, P<0.05, and VIP≥1) by liquid chromatography-mass spectrum. These identified ions were mainly classified into three categories, including the compounds with biological roles, lipids, and phytochemical compounds. In addition to WGBR-T18 vs. WGBR, massive differential positive and negative ions were revealed between rice of different forms. Flavonoids, fatty acids, carboxylic acids, and organoxygen compounds were the dominant differential metabolites. Based on the Kyoto Encyclopedia of Genes and Genomes(KEGG) database, there 7 metabolic pathways(phenylalanine/tyrosine/tryptophan biosynthesis, histidine metabolism, betalain biosynthesis, C5-branched dibasic acid metabolism, purine metabolism, zeatin biosynthesis, and carbon metabolism) were determined between brown rice and rice. Germination changed the metabolic pathways of porphyrin and chlorophyll, pyrimidine, and purine metabolisms in brown rice. In addition, phosphonate and phosphinate metabolism, and arachidonic acid metabolism were differential metabolic pathways between WGBR-HTP and WGBR-T18. To sum up, there were obvious variations in metabolic compositions of rice, brown rice, WGBR, and WGBR-HTP. The changes of specific metabolites, such as flavonoids contributed to the antioxidant, anti-inflammatory, anti-cancer, and immunomodulatory effects of GBR. HTP may further improve the nutrition and storage of GBR through influencing specific metabolites, such as flavonoids and fatty acids.展开更多
To produce high sensory quality sweetened adzuki an,the effects of cooking conditions including cooking time,heating power,sugar soaking time and soaking liquid pH on textural properties and sensory scores were evalua...To produce high sensory quality sweetened adzuki an,the effects of cooking conditions including cooking time,heating power,sugar soaking time and soaking liquid pH on textural properties and sensory scores were evaluated using central composite experimental method.Blanching treatment and sodium tripolyphosphate were adopted to improve the mouthfeel of the whole bean an product.Results showed that the optimal parameters were as follows:cooking time of 50 min,heating power of 1.1 kW,sugar soaking time of 2 h and soaking liquid pH of 8.0,which resulted in the highest sensory score of 89.6.In this study,the effectiveness of the method to process sweetened whole bean adzuki an was validated and a sensory evaluation method for whole grain adzuki an product was developed.展开更多
基金Food Processing Institute of the Guizhou Academy of Agricultural Sciences, Potato Engineering Research Center of Guizhou Province, China for the financial supportsupported by the PhD Programs Foundation of Guizhou Province ([2017]1180)+1 种基金the Youth Fund from Guizhou Academy of Agricultural Science, China ([2017]026)the Scientific and Technical Support Programs of Guizhou Province, China ([2017]2543)
文摘To improve the processing quality of potatoes,phosphate buffer extract(PBE),50%ethanol(E50),and aqueous extract(AE)of tartary buckwheat seedlings were evaluated for their ability to inhibit the enzymatic browning of potatoes.The results suggest that all extracts of tartary buckwheat seedlings exert significant inhibitory effects on the polyphenol oxidase(PPO)activity in potatoes.The relative concentrations required for a 50%reduction in the PPO activity(IC50)were 0.21,0.28 and 0.41 mg mL^-1,for PBE,E50 and AE,respectively.The strongest inhibitory activity was observed for PBE,followed by E50 and AE.Four flavone compounds in the PBE of tartary buckwheat seedlings(i.e.,rutin,kaempferol-3-O-rutinoside,quercetin,and kaempferol)were identified by high-performance liquid chromatography.These compounds were subsequently evaluated for their roles in the inhibition of PPO from potatoes using a model system.The results indicated that rutin exhibited the highest inhibition rate on the PPO of potato.A synergistic inhibitory effect was observed by mixing rutin,kaempferol-3-Orutinoside,quercetin,and proteins.The inhibitory patterns of rutin,kaempferol-3-O-rutinoside,and quercetin on the enzyme were noncompetitive and reversible,with inhibitory constants of 0.12,0.31,and 0.40 mg mL^-1,respectively.Flavonoids from tartary buckwheat seedlings may exhibit a common mechanism with phenolic compounds,involving the blockage of the reaction of oxygen with PPO leading to the inhibition of the enzymes involved in browning.Based on these results,extracts of tartary buckwheat seedlings can be used as potent natural inhibitors.
基金Supported by the National 12th Five-year Plan for Science&Technology Support Fund(2012BAK08B04-02)the Heilongjiang Science and Technology Plan(GC12B404)
文摘Near infrared spectrometer technology under a wavelength range of 918-1045 nm was used to rapidly detect paddy rice that was stored at 5℃, 15℃ and 25℃. A total of 121 paddy rice samples were collected from artificial infection with moulds to build the calibration models to calculate the total number colony of moulds based on the principal component regression method and multiple linear regression method. The results of statistical analysis indicated that multiple linear regression method was applicable to the detection of the total number colony of moulds. The correlation of calibration data set was 0.943. The correlation of prediction data set was 0.897. Therefore, the result showed that near infrared spectroscopy could be a useful instrumental method for determining the total number colony of moulds in paddy rice. The near infrared spectroscopy methodology could be applied for monitoring mould contamination in postharvest paddy rice during storage and might become a powerful tool for monitoring the safety of the grain.
基金funded by the National Key Research and Development Program of China(2021YFD2100902)the Outstanding Youth Project of Provincial Agricultural Science and Technology Innovation and Leaping Project,China(2022JCQN005)+1 种基金the Research Funding for Scientific Research Institutes in Heilongjiang Province,China(CZKYF2022-1-B021)the National Rice Industry Technology System,China。
文摘Hyperlipidemia is a frequent metabolic disorder that is closely associated with diet. It is believed that brown rice, containing the outer bran layer and germ, is beneficial for the remission of hyperlipidemia. This study established a rat model of hyperlipidemia by feeding a high-fat diet. The hypolipidemic potential of germinated brown rice(Gbrown) and germinated black rice(a germinated black-pigmented brown rice, Gblack) were explored in the model rats, mainly in the aspects of blood lipids, lipases, apolipoproteins, and inflammation. The gut microbiota in hyperlipidemic rats receiving diverse dietary interventions was determined by 16S rDNA sequencing. The results showed that the intervention of Gbrown/Gblack alleviated the hyperlipidemia in rats, evidenced by decreased TC, TG, LDL-C, and apolipoprotein B, and increased HDL-C, HL, LPL, LCAT, and apolipoprotein A1. Gbrown/Gblack also weakened the inflammation in hyperlipidemia rats, evidenced by decreased TNF-α, IL-6, and ET-1. In addition, 16S rDNA sequencing revealed that the diet of Gbrown/Gblack elevated the abundance and diversity of gut microbiota in hyperlipidemia rats. At the phylum level, Gbrown/Gblack decreased Firmicutes, increased Bacteroidetes, and decreased the F/B ratio in hyperlipidemia rats. At the genus level, Gbrown/Gblack decreased Streptococcus and increased Ruminococcus and Allobaculum in hyperlipidemia rats. Some differential microbial genera relating to lipid metabolism were also determined, such as the Lachnospira and Ruminococcus in the Gblack group, and the Phascolarctobacterium, Dorea, Turicibacter, and Escherichia-Shigella in the Gbrown group. Notably, the beneficial effect of Gblack was stronger than Gbrown. To sum up, the dietary interventions of Gbrown/Gblack contributed to the remission of hyperlipidemia by alleviating the dysbiosis of gut microbiota.
基金funded by the National Key Research and Development Program of China(2021YFD2100902)the Major Science and Technology Program of Heilongjiang,China(2019ZX08B02)+2 种基金the Research Funding for Scientific Research Institutes in Heilongjiang Province,China(CZKYF2021B001)the National Rice Industry Technology System,China(CARS-01-50)the Heilongjiang Touyan Team,China(HITTY-20190034)。
文摘Germination and processing are always accompanied by significant changes in the metabolic compositions of rice. In this study, polished rice(rice), brown rice, wet germinated brown rice(WGBR), high temperature and pressure-treated WGBR(WGBR-HTP), and low temperature-treated WGBR(WGBR-T18) were enrolled. An untargeted metabolomics assay isolated 6 122 positive ions and 4 224 negative ions(multiple difference ≥1.2 or ≤0.8333, P<0.05, and VIP≥1) by liquid chromatography-mass spectrum. These identified ions were mainly classified into three categories, including the compounds with biological roles, lipids, and phytochemical compounds. In addition to WGBR-T18 vs. WGBR, massive differential positive and negative ions were revealed between rice of different forms. Flavonoids, fatty acids, carboxylic acids, and organoxygen compounds were the dominant differential metabolites. Based on the Kyoto Encyclopedia of Genes and Genomes(KEGG) database, there 7 metabolic pathways(phenylalanine/tyrosine/tryptophan biosynthesis, histidine metabolism, betalain biosynthesis, C5-branched dibasic acid metabolism, purine metabolism, zeatin biosynthesis, and carbon metabolism) were determined between brown rice and rice. Germination changed the metabolic pathways of porphyrin and chlorophyll, pyrimidine, and purine metabolisms in brown rice. In addition, phosphonate and phosphinate metabolism, and arachidonic acid metabolism were differential metabolic pathways between WGBR-HTP and WGBR-T18. To sum up, there were obvious variations in metabolic compositions of rice, brown rice, WGBR, and WGBR-HTP. The changes of specific metabolites, such as flavonoids contributed to the antioxidant, anti-inflammatory, anti-cancer, and immunomodulatory effects of GBR. HTP may further improve the nutrition and storage of GBR through influencing specific metabolites, such as flavonoids and fatty acids.
基金financially supported in part by the National“948”project of Ministry of Agriculture,P.R.China.
文摘To produce high sensory quality sweetened adzuki an,the effects of cooking conditions including cooking time,heating power,sugar soaking time and soaking liquid pH on textural properties and sensory scores were evaluated using central composite experimental method.Blanching treatment and sodium tripolyphosphate were adopted to improve the mouthfeel of the whole bean an product.Results showed that the optimal parameters were as follows:cooking time of 50 min,heating power of 1.1 kW,sugar soaking time of 2 h and soaking liquid pH of 8.0,which resulted in the highest sensory score of 89.6.In this study,the effectiveness of the method to process sweetened whole bean adzuki an was validated and a sensory evaluation method for whole grain adzuki an product was developed.