High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various phys...High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various physical fields involved in HVEP still need to be further understood.In this study,we establish a 2D numerical model of multi-physical field coupling of the electrical breakdown of porous rock with randomly distributed pores to investigate the effect of pore characteristics(porosity,pore media composition)on the partial electrical breakdown of rock(i.e.the generation of a plasma channel inside the rock).Our findings indicate that the generation of a plasma channel is directionally selective and extends in the direction of a weak electrical breakdown intensity.As the porosity of the rock increases,so does the intensity of the electric field in the‘electrical damage’region—the greater the porosity,the greater the effectiveness of rock-breaking.As the fraction of pore fluid(S_(water)/S_(air))gradually declines,the generation time of the plasma channel decreases,and the efficacy of rock-breaking by HVEP increases.In addition,in this study,we conducted an indoor experiment utilizing an electric pulse drill to break down the rock in order to recreate the growth mode of the plasma channel in the rock.Moreover,the experimental results are consistent with the simulation results.In addition,the development of this type of partial electrical breakdown is confirmed to be related to electrode polarity and pore characteristics via the experiment of the symmetrical needle-needle electrode arrangement,which further demonstrates the mechanism of partial electrical breakdown.This research is significant for comprehending the process of electric impulse rock-breaking and gives theoretical guidance and technological support for advancing electric impulse drilling technology.展开更多
The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking e...The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking efficiency and ROP.However,the rock-breaking mechanism of percussive drilling is still unclear enough,especially the micro-fracture mechanism of rock under confining pressure(under lateral pressure and hydraulic pressure).In this paper,the impact rock breaking experiments by four kinds of Polycrystalline Diamond Compact(PDC)cutters are carried out using a drop-weight impact testing machine and an acoustic emission(AE)recording system,the influence of parameters such as cutter shape,rake angle,and impact energy on rock-breaking are systematically analyzed.This study includes a numerical simulation to examine the process of crack initiation,propagation,and cuttings formation during the impact process with the consideration of confining pressure.The results show the conicalshaped cutter is the most aggressive with high breaking efficiency.The penetration depth of the cutter is mainly influenced by the impact energy and cutter shape than the rake angle of the cutter.There exists critical impact energy makes the rock breaking efficiency the highest.The critical impact energy is about 40 J when using the conical-shaped cutter with a rake angle of 15°.The rock mainly failed in tensile mode,and the inter-grain crack is the main crack.Hydraulic pressure can inhibit the formation of horizontal cracks,while lateral pressure can inhibit the formation of vertical cracks and reduce the proportion of tensile cracks.The research results can provide some reference and basis for improving the rock-breaking efficiency in deep hard formations.展开更多
基金supported by National Natural Science Foundation of China(Nos.52034006,52004229,52225401 and52274231)Regional Innovation Cooperation Project of Sichuan Province(No.2022YFQ0059)+1 种基金Natural Science Foundation of Sichuan Province(No.23NSFSC2099)Science and Technology Strategic Cooperation Project between Nanchong City and Southwest Petroleum University(No.SXHZ004)。
文摘High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various physical fields involved in HVEP still need to be further understood.In this study,we establish a 2D numerical model of multi-physical field coupling of the electrical breakdown of porous rock with randomly distributed pores to investigate the effect of pore characteristics(porosity,pore media composition)on the partial electrical breakdown of rock(i.e.the generation of a plasma channel inside the rock).Our findings indicate that the generation of a plasma channel is directionally selective and extends in the direction of a weak electrical breakdown intensity.As the porosity of the rock increases,so does the intensity of the electric field in the‘electrical damage’region—the greater the porosity,the greater the effectiveness of rock-breaking.As the fraction of pore fluid(S_(water)/S_(air))gradually declines,the generation time of the plasma channel decreases,and the efficacy of rock-breaking by HVEP increases.In addition,in this study,we conducted an indoor experiment utilizing an electric pulse drill to break down the rock in order to recreate the growth mode of the plasma channel in the rock.Moreover,the experimental results are consistent with the simulation results.In addition,the development of this type of partial electrical breakdown is confirmed to be related to electrode polarity and pore characteristics via the experiment of the symmetrical needle-needle electrode arrangement,which further demonstrates the mechanism of partial electrical breakdown.This research is significant for comprehending the process of electric impulse rock-breaking and gives theoretical guidance and technological support for advancing electric impulse drilling technology.
基金supported by the National Natural Science Foundation of China(Grant No.52034006,No.52004229,No.52225401,No.52274231)Regional Innovation Cooperation Project of Sichuan Province(2022YFQ0059)+2 种基金Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX040301)Natural Science Foundation of Sichuan Province(23NSFSC 2099)Science and Technology Strategic Cooperation Project between Nanchong City and Southwest Petroleum University(SXHZ004).
文摘The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking efficiency and ROP.However,the rock-breaking mechanism of percussive drilling is still unclear enough,especially the micro-fracture mechanism of rock under confining pressure(under lateral pressure and hydraulic pressure).In this paper,the impact rock breaking experiments by four kinds of Polycrystalline Diamond Compact(PDC)cutters are carried out using a drop-weight impact testing machine and an acoustic emission(AE)recording system,the influence of parameters such as cutter shape,rake angle,and impact energy on rock-breaking are systematically analyzed.This study includes a numerical simulation to examine the process of crack initiation,propagation,and cuttings formation during the impact process with the consideration of confining pressure.The results show the conicalshaped cutter is the most aggressive with high breaking efficiency.The penetration depth of the cutter is mainly influenced by the impact energy and cutter shape than the rake angle of the cutter.There exists critical impact energy makes the rock breaking efficiency the highest.The critical impact energy is about 40 J when using the conical-shaped cutter with a rake angle of 15°.The rock mainly failed in tensile mode,and the inter-grain crack is the main crack.Hydraulic pressure can inhibit the formation of horizontal cracks,while lateral pressure can inhibit the formation of vertical cracks and reduce the proportion of tensile cracks.The research results can provide some reference and basis for improving the rock-breaking efficiency in deep hard formations.