In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided ...In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided a detailed decomposition of the carbon intensity and energy intensity,which enables the quantification of clean energy development and electrification.The logarithmic mean divisia index(LMDI)has been applied to the historical data to quantify the contributions of the various factors affecting the CO2 emissions.Further,the global energy interconnection(GEI)scenario has been introduced for providing a systematic solution to meet the 2℃goal of the Paris Agreement.By combining LMDI with the scenario analysis,the mitigation potential of the various factors for CO2 emission has been analyzed.Results from the historical data indicate that economic development and population growth contribute the most to the increase in CO2 emissions,whereas improvement in the power generation efficiency predominantly helps in emission reduction.A numerical analysis,performed for obtaining the projected future carbon emissions,suggests that clean energy development and electrification are the top two factors that can decrease CO2 emissions,thus showing their great potential for mitigation in the future.Moreover,the carbon capture and storage technology serves as an important supplementary mitigation method.展开更多
Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-...Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.展开更多
Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves lar...Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.展开更多
With the increasing severity of environmental problems,many countries have set energy transition targets to promote the realization of the Paris Agreement.There has been a global consensus on utilizing solar energy re...With the increasing severity of environmental problems,many countries have set energy transition targets to promote the realization of the Paris Agreement.There has been a global consensus on utilizing solar energy resources as alternatives to conventional sources to support this energy transition.In this regard,analyzing the“location,”“quantity,”and“quality”of global solar energy resources will not only assist an individual country to efficiently utilize these resources but also promote the realization of large-scale intercontinental resource utilization and complementation.This study established the basic database,model methods,and platform tools for global solar energy assessment,Then,a global solar energy resource assessment was conducted,which included the theoretical reserves(TRs),technical installed potential capacity(TPIC),and average development cost(ADC).A comparative analysis of the assessment results for all continents was also performed.After that,based on big data analysis and geographic information system(GIS)calculations,the distribution characteristics of the global solar power TPIC were calculated with the two core indicators,namely the capacity factor and ADC.Furthermore,a data-driven quantitative evaluation of the refined development potential of solar energy resources was performed.Finally,the reasonableness and coincidence analysis of the resource assessment results were verified using data from global and specifically Chinese photovoltaic(PV)bases.展开更多
To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid c...To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid carbon emissions from hydrogen production,which is traditionally performed using fossil fuels;Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand.In this study,we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system,particularly that derived from hydrogen storage.An electricity-hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy.Based on this model and considering Northwest China as the region of study,the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels.The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term,contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost.This advantage can be further improved when the hydrogen demand rises.However,a cost reduction by 20%is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems.This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.展开更多
With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a c...With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.展开更多
This paper addresses the issues regarding the economics of clean energy transmission channels in Southeast Asia.The research developed an improved comprehensive model for the generation and transmission planning consi...This paper addresses the issues regarding the economics of clean energy transmission channels in Southeast Asia.The research developed an improved comprehensive model for the generation and transmission planning considering variable renewable energy characteristics,and it simulated the hourly resolution operation condition of a cross-regional interconnection grid of Southeast Asia,China,and South Asia.Additionally,we conducted a sensitivity analysis,and the assessment of the channels’economics covered a variety of factors such as clean energy penetration,CO_(2),and pollutant reduction.Conclusions are drawn regarding the influence of different parameters and conditions on the economics of the transmission channel.Subsequently,several recommendations were proposed based on these analyses,which could support the development of the scheme of Southeast Asia power grid and the interconnection of the Belt and Road initiative.展开更多
A power source–power grid coordinated typhoon defense strategy is proposed in this study to minimize the cost of power grid anti-typhoon reinforcement measures and improve defense efficiency.It is based on multiagent...A power source–power grid coordinated typhoon defense strategy is proposed in this study to minimize the cost of power grid anti-typhoon reinforcement measures and improve defense efficiency.It is based on multiagent dynamic game theory.This strategy regards a typhoon as a rational gamer that always causes the greatest damage.Together with the grid planner and black start unit(BSU)planner,it forms a multiagent defense–attack–defense dynamic game model naturally.The model is adopted to determine the optimal reinforcements for the transmission lines,black start power capacity,and location.Typhoon Hato,which struck a partial coastal area in Guangdong province in China in 2017,was adopted to formulate a step-by-step model of a typhoon attacking coastal area power systems.The results were substituted into the multiagent defense–attack–defense dynamic game model to obtain the optimal transmission line reinforcement positions,as well as optimal BSU capacity and geographic positions.An effective typhoon defense strategy and minimum load shedding were achieved,demonstrating the feasibility and correctness of the proposed strategy.The related theories and methods of this study have positive significance for the prevention of uncertain large-scale natural disasters.展开更多
The energy sector has an essential role in limiting the global average temperature increase to below 2°C.Redirecting and advancing technological progress contribute to carbon-free transition solutions.Energy tran...The energy sector has an essential role in limiting the global average temperature increase to below 2°C.Redirecting and advancing technological progress contribute to carbon-free transition solutions.Energy transition is currently one of the most debated issues in the world.This paper reviews and summarizes the current policy projections and their assumptions organized by some major countries in the energy sector,particularly in the coal sector,and provides a detailed discussion on specific and significant socio-technical pathways taken by countries to achieve zero-carbon targets.Their implementation involves restructuring the existing energy system and requires appropriate policy support and sufficient investment in infrastructure development and technological innovation.Some basic principles and countermeasures that have already been implemented by some major emitters,such as India and China,are also discussed,with different transformation pathways.Critical suggestions are also provided,such as implementing best practice policies at the national level,moving to more efficient transition strategies,national and regional cooperation,cross-border energy grid integration,and private sector involvement to reduce carbon emissions from coal-fired power plants,not only by reducing coal consumption but also by introducing various low carbon technologies.展开更多
The front-row shading reduction coefficient is a key parameter used to calculate the system efficiency of a photovoltaic(PV)power station.Based on the Hay anisotropic sky scattering model,the variation rule of solar r...The front-row shading reduction coefficient is a key parameter used to calculate the system efficiency of a photovoltaic(PV)power station.Based on the Hay anisotropic sky scattering model,the variation rule of solar radiation intensity on the surface of the PV array during the shaded period is simulated,combined with the voltage-current characteristics of the PV modules,and the shadow occlusion operating mode of the PV array is modeled.A method for calculating the loss coefficient of front shadow occlusion based on the division of the PV cell string unit and Hay anisotropic sky scattering model is proposed.This algorithm can accurately evaluate the degree of influence of the PV array layout,wiring mode,array spacing,PV module specifications,and solar radiation on PV power station system efficiency.It provides a basis for optimizing the PV array layout,reducing system loss,and improving PV system efficiency.展开更多
Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or ligh...Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or lightning strike.To meet the construction requirements of different multi-in-one substations,two typical application modes of grounding systems in multi-in-one substations are analyzed in this paper:plane and longitudinal layout schemes.First,the safety index and withstand voltage of secondary equipment in multi-in-one substations are introduced.Second,the plane layout scheme of grounding grids is examined.Based on a 35-kV multi-in-one substations in Shanghai,it was verified that the overall grounding grid needs to be laid to meet the safety of secondary equipment in the station.Finally,considering that it is feasible to rebuild the upper layer of a substation,the longitudinal layout scheme of the grounding grid in multi-in-one substations is also examined.Safety assessment is carried out in terms of aspects such as short-circuits and lightning strikes,and relevant optimization construction methods are analyzed.In this study,a real 35-kV substation in Shanghai was selected as an example.Simulation and field tests based on Current Distribution,Electromagnetic Fields,Grounding and Soil Structure Analysis(CDEGS)software verified that the proposed construction scheme can achieve safe operation of multi-in-one substations.This construction idea can also serve as a reference for the future construction of multi-in-one substations.展开更多
Uncertainty must be well addressed in transmission expansion planning(TEP)problem,and it significantly affects the reliability and cost-effectiveness of power systems.Owing to the complex operating environment of powe...Uncertainty must be well addressed in transmission expansion planning(TEP)problem,and it significantly affects the reliability and cost-effectiveness of power systems.Owing to the complex operating environment of power systems,it is crucial to consider different types of uncertainties during the planning stage.In this paper,a robust TEP model is proposed by considering multiple uncertainties and active load.Specifically,in this model,the uncertainties of wind power output and contingency probability are considered simultaneously.The uncertainties are described by scenario and interval,and the Benders decomposition technique is applied to solve the model.The feasibility and effectiveness of the proposed model are illustrated using the IEEE RTS and IEEE 118-node systems.展开更多
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer...When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.展开更多
2.1Development background2.1.1Greenhouse gas emission reduction is imminent Climate change is one of the most severe global challenges.China has made a solemn commitment to the international community at the national ...2.1Development background2.1.1Greenhouse gas emission reduction is imminent Climate change is one of the most severe global challenges.China has made a solemn commitment to the international community at the national level to reach the peak of carbon dioxide emissions around 2030 and strive to reach the peak as soon as possible[30].展开更多
Based on the results of the complex climate model BCC-CSM,the Beijing Climate Center Simple Earth System Model(BCC-SESM)was developed for climate system simulations in Integrated Assessment Models(IAMs).The first vers...Based on the results of the complex climate model BCC-CSM,the Beijing Climate Center Simple Earth System Model(BCC-SESM)was developed for climate system simulations in Integrated Assessment Models(IAMs).The first version of the BCC-SESM model was based on a high-emissions scenario(ESMRCP8.5)and tends to overestimate the temperatures in low and medium emissions scenarios.To address this problem,this study uses three CO_(2)-concentration-driven simulations under different RCP scenarios of complex climate models to evaluate parameters sensitivity and their impacts on projection efficacy.The results show that the new version of the BCC-SESM(denoted as BCC-SESM1.1)model based on a medium-emissions scenario experiment(RCP4.5)is more suitable for temperature projections for various climate scenarios.It can well reproduce the original value of complex climate model.At the same time,it also has high predictive efficacies for medium(RCP4.5)and low(RCP2.6)emissions scenarios,although it tends to underestimate for high emissions scenario(RCP8.5).The sensitivity tests for different RCP scenarios shows that the BCC-SESM1.1 has higher efficacy in projections of future climate change than those model versions based on the other scenarios.The projection deviations for the global average temperature by the BCC-SESM1.1(<2%)are better than the previous BCC-SESM(<5%).In light of recent progress in climate policy,the BCC-SESM1.1 is hence more suitable for coupling with IAMs for the purposes of assessing climate outcomes.展开更多
基金This work was supported by the Science and Technology Foundation of GEIGC(101662227)National Key Research and Development Program of China(2018 YFB0905000).
文摘In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided a detailed decomposition of the carbon intensity and energy intensity,which enables the quantification of clean energy development and electrification.The logarithmic mean divisia index(LMDI)has been applied to the historical data to quantify the contributions of the various factors affecting the CO2 emissions.Further,the global energy interconnection(GEI)scenario has been introduced for providing a systematic solution to meet the 2℃goal of the Paris Agreement.By combining LMDI with the scenario analysis,the mitigation potential of the various factors for CO2 emission has been analyzed.Results from the historical data indicate that economic development and population growth contribute the most to the increase in CO2 emissions,whereas improvement in the power generation efficiency predominantly helps in emission reduction.A numerical analysis,performed for obtaining the projected future carbon emissions,suggests that clean energy development and electrification are the top two factors that can decrease CO2 emissions,thus showing their great potential for mitigation in the future.Moreover,the carbon capture and storage technology serves as an important supplementary mitigation method.
基金supported by the National Science Foundation of China(Grant No.41701232).
文摘Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.
基金jointly supported by Youth Program of National Natural Science Foundation of China(No.51907100)Technical Program of Global Energy Interconnection Group Co.,Ltd(No.1100/2020-75001B)
文摘Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.
基金supported by National Science and Technology Major Project(2018YFB0904000).
文摘With the increasing severity of environmental problems,many countries have set energy transition targets to promote the realization of the Paris Agreement.There has been a global consensus on utilizing solar energy resources as alternatives to conventional sources to support this energy transition.In this regard,analyzing the“location,”“quantity,”and“quality”of global solar energy resources will not only assist an individual country to efficiently utilize these resources but also promote the realization of large-scale intercontinental resource utilization and complementation.This study established the basic database,model methods,and platform tools for global solar energy assessment,Then,a global solar energy resource assessment was conducted,which included the theoretical reserves(TRs),technical installed potential capacity(TPIC),and average development cost(ADC).A comparative analysis of the assessment results for all continents was also performed.After that,based on big data analysis and geographic information system(GIS)calculations,the distribution characteristics of the global solar power TPIC were calculated with the two core indicators,namely the capacity factor and ADC.Furthermore,a data-driven quantitative evaluation of the refined development potential of solar energy resources was performed.Finally,the reasonableness and coincidence analysis of the resource assessment results were verified using data from global and specifically Chinese photovoltaic(PV)bases.
基金National Natural Science Foundation of China(program number 51707108)Global Energy Interconnection Group Co.,Ltd.Science and Technology Project(2700/2020-75001B).
文摘To achieve carbon neutrality by 2060,decarbonization in the energy sector is crucial.Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons:use of power-to-hydrogen(P2H)can avoid carbon emissions from hydrogen production,which is traditionally performed using fossil fuels;Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand.In this study,we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system,particularly that derived from hydrogen storage.An electricity-hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy.Based on this model and considering Northwest China as the region of study,the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels.The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term,contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost.This advantage can be further improved when the hydrogen demand rises.However,a cost reduction by 20%is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems.This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.
基金the Science and Technology Project of Global Energy Interconnection Group Co.,Ltd.(No.524500180014).
文摘With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.
基金Supported by Science and Technology Foundation of GEIG(52450018000M)National Key R&D Program of China(2016YFB0900500).
文摘This paper addresses the issues regarding the economics of clean energy transmission channels in Southeast Asia.The research developed an improved comprehensive model for the generation and transmission planning considering variable renewable energy characteristics,and it simulated the hourly resolution operation condition of a cross-regional interconnection grid of Southeast Asia,China,and South Asia.Additionally,we conducted a sensitivity analysis,and the assessment of the channels’economics covered a variety of factors such as clean energy penetration,CO_(2),and pollutant reduction.Conclusions are drawn regarding the influence of different parameters and conditions on the economics of the transmission channel.Subsequently,several recommendations were proposed based on these analyses,which could support the development of the scheme of Southeast Asia power grid and the interconnection of the Belt and Road initiative.
基金supported by the National Natural Science Foundation of China(No.U1766204)。
文摘A power source–power grid coordinated typhoon defense strategy is proposed in this study to minimize the cost of power grid anti-typhoon reinforcement measures and improve defense efficiency.It is based on multiagent dynamic game theory.This strategy regards a typhoon as a rational gamer that always causes the greatest damage.Together with the grid planner and black start unit(BSU)planner,it forms a multiagent defense–attack–defense dynamic game model naturally.The model is adopted to determine the optimal reinforcements for the transmission lines,black start power capacity,and location.Typhoon Hato,which struck a partial coastal area in Guangdong province in China in 2017,was adopted to formulate a step-by-step model of a typhoon attacking coastal area power systems.The results were substituted into the multiagent defense–attack–defense dynamic game model to obtain the optimal transmission line reinforcement positions,as well as optimal BSU capacity and geographic positions.An effective typhoon defense strategy and minimum load shedding were achieved,demonstrating the feasibility and correctness of the proposed strategy.The related theories and methods of this study have positive significance for the prevention of uncertain large-scale natural disasters.
基金Global Energy Internet Group Co.,Ltd Science and Technology Project(SGGEIG00JYJS2000046)by National Natural Science Foundation of China(51977123).
文摘The energy sector has an essential role in limiting the global average temperature increase to below 2°C.Redirecting and advancing technological progress contribute to carbon-free transition solutions.Energy transition is currently one of the most debated issues in the world.This paper reviews and summarizes the current policy projections and their assumptions organized by some major countries in the energy sector,particularly in the coal sector,and provides a detailed discussion on specific and significant socio-technical pathways taken by countries to achieve zero-carbon targets.Their implementation involves restructuring the existing energy system and requires appropriate policy support and sufficient investment in infrastructure development and technological innovation.Some basic principles and countermeasures that have already been implemented by some major emitters,such as India and China,are also discussed,with different transformation pathways.Critical suggestions are also provided,such as implementing best practice policies at the national level,moving to more efficient transition strategies,national and regional cooperation,cross-border energy grid integration,and private sector involvement to reduce carbon emissions from coal-fired power plants,not only by reducing coal consumption but also by introducing various low carbon technologies.
基金This work was supported by the Global Energy Interconnection Group Limited Science&Technology Project(Project No.:SGGEIG00JYJS1900046).
文摘The front-row shading reduction coefficient is a key parameter used to calculate the system efficiency of a photovoltaic(PV)power station.Based on the Hay anisotropic sky scattering model,the variation rule of solar radiation intensity on the surface of the PV array during the shaded period is simulated,combined with the voltage-current characteristics of the PV modules,and the shadow occlusion operating mode of the PV array is modeled.A method for calculating the loss coefficient of front shadow occlusion based on the division of the PV cell string unit and Hay anisotropic sky scattering model is proposed.This algorithm can accurately evaluate the degree of influence of the PV array layout,wiring mode,array spacing,PV module specifications,and solar radiation on PV power station system efficiency.It provides a basis for optimizing the PV array layout,reducing system loss,and improving PV system efficiency.
基金supported by National Natural Science Foundation of China(No.92067105)the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.5209211900VD).
文摘Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or lightning strike.To meet the construction requirements of different multi-in-one substations,two typical application modes of grounding systems in multi-in-one substations are analyzed in this paper:plane and longitudinal layout schemes.First,the safety index and withstand voltage of secondary equipment in multi-in-one substations are introduced.Second,the plane layout scheme of grounding grids is examined.Based on a 35-kV multi-in-one substations in Shanghai,it was verified that the overall grounding grid needs to be laid to meet the safety of secondary equipment in the station.Finally,considering that it is feasible to rebuild the upper layer of a substation,the longitudinal layout scheme of the grounding grid in multi-in-one substations is also examined.Safety assessment is carried out in terms of aspects such as short-circuits and lightning strikes,and relevant optimization construction methods are analyzed.In this study,a real 35-kV substation in Shanghai was selected as an example.Simulation and field tests based on Current Distribution,Electromagnetic Fields,Grounding and Soil Structure Analysis(CDEGS)software verified that the proposed construction scheme can achieve safe operation of multi-in-one substations.This construction idea can also serve as a reference for the future construction of multi-in-one substations.
基金supported by a project of the State Grid Shandong Electric Power Company(52062520000Q)the National Key Research and Development Program of China(2019YFE0118400).
文摘Uncertainty must be well addressed in transmission expansion planning(TEP)problem,and it significantly affects the reliability and cost-effectiveness of power systems.Owing to the complex operating environment of power systems,it is crucial to consider different types of uncertainties during the planning stage.In this paper,a robust TEP model is proposed by considering multiple uncertainties and active load.Specifically,in this model,the uncertainties of wind power output and contingency probability are considered simultaneously.The uncertainties are described by scenario and interval,and the Benders decomposition technique is applied to solve the model.The feasibility and effectiveness of the proposed model are illustrated using the IEEE RTS and IEEE 118-node systems.
基金supported partially by the National Natural Science Foundation of China under Grant 61503348the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010the 111 project under Grant B17040
文摘When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.
文摘2.1Development background2.1.1Greenhouse gas emission reduction is imminent Climate change is one of the most severe global challenges.China has made a solemn commitment to the international community at the national level to reach the peak of carbon dioxide emissions around 2030 and strive to reach the peak as soon as possible[30].
基金funded by National Natural Science Foundation of China(42175171)National Key R&D Program of China(2016YFA0602602)Public Welfare Meteo-rology Research Project(GYHY201506023).
文摘Based on the results of the complex climate model BCC-CSM,the Beijing Climate Center Simple Earth System Model(BCC-SESM)was developed for climate system simulations in Integrated Assessment Models(IAMs).The first version of the BCC-SESM model was based on a high-emissions scenario(ESMRCP8.5)and tends to overestimate the temperatures in low and medium emissions scenarios.To address this problem,this study uses three CO_(2)-concentration-driven simulations under different RCP scenarios of complex climate models to evaluate parameters sensitivity and their impacts on projection efficacy.The results show that the new version of the BCC-SESM(denoted as BCC-SESM1.1)model based on a medium-emissions scenario experiment(RCP4.5)is more suitable for temperature projections for various climate scenarios.It can well reproduce the original value of complex climate model.At the same time,it also has high predictive efficacies for medium(RCP4.5)and low(RCP2.6)emissions scenarios,although it tends to underestimate for high emissions scenario(RCP8.5).The sensitivity tests for different RCP scenarios shows that the BCC-SESM1.1 has higher efficacy in projections of future climate change than those model versions based on the other scenarios.The projection deviations for the global average temperature by the BCC-SESM1.1(<2%)are better than the previous BCC-SESM(<5%).In light of recent progress in climate policy,the BCC-SESM1.1 is hence more suitable for coupling with IAMs for the purposes of assessing climate outcomes.