Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)...Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.展开更多
Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relative...Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relatively easy to control the sludge generation in aluminum alloys.But formation mechanisms and characteristics of sludge in die casting magnesium alloys are still unclear.To ensure the production of high quality die cast components at a low cost,a full understanding of sludge in die casting Mg alloys and its proper control measures need to be developed,since excessive sludge formation affects deleteriously material and operation cost,and casting performance.In the present report,the formation,characteristics and control of Mg die-casting sludge,based on the established knowledge of sludge formation and sludge factor in Al die casting alloys,are reviewed.Previous work on characterization and assessment of sludge in die cast Mg alloys are reviewed.Metallurgical principles for control of sludge in ingot production in association with die casting of Mg alloys are discussed.Rapid assessment of Mg oxide and intermetallics relevant to sludge formation in Mg alloys are highlighted.展开更多
Multiple reference optical coherence tomography(MR-OCT) is a recently developed, low-cost and compact time-domain OCT solution for primary care and consumer level applications. A combination of a voice coil actuator...Multiple reference optical coherence tomography(MR-OCT) is a recently developed, low-cost and compact time-domain OCT solution for primary care and consumer level applications. A combination of a voice coil actuator and a partial mirror(PM) extends the scan range for imaging depths of approximately 1 mm in biological samples. Our previous research on MR-OCT is based only on intensity information obtained from the depth-resolved interference signal. In this Letter, we extract the phase information from the MR-OCT signal and, hence, provide an additional contrast modality. The phase sensitivity of the system is measured to be approximately 0.2 and 1.5 rad for the first and twelfth orders of reflection when using a mirror as the sample.This Letter describes first results of phase-sensitive data measured on a phantom obtained with MR-OCT. Data from a chick embryo chorioallantoic membrane(CAM) is used to demonstrate the feasibility of MR-OCT for in vivo phase-sensitive imaging.展开更多
基金Meridian Lightweight Technologies Inc.,Strathroy,Ontario Canadathe University of Windsor,Windsor,Ontario,Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies,Inc.
文摘Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.
基金the Meridian Lightweight Technologies Inc., Strathroy, Ontario Canadathe University of Windsor, Windsor, Ontario, Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies, Inc.
文摘Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relatively easy to control the sludge generation in aluminum alloys.But formation mechanisms and characteristics of sludge in die casting magnesium alloys are still unclear.To ensure the production of high quality die cast components at a low cost,a full understanding of sludge in die casting Mg alloys and its proper control measures need to be developed,since excessive sludge formation affects deleteriously material and operation cost,and casting performance.In the present report,the formation,characteristics and control of Mg die-casting sludge,based on the established knowledge of sludge formation and sludge factor in Al die casting alloys,are reviewed.Previous work on characterization and assessment of sludge in die cast Mg alloys are reviewed.Metallurgical principles for control of sludge in ingot production in association with die casting of Mg alloys are discussed.Rapid assessment of Mg oxide and intermetallics relevant to sludge formation in Mg alloys are highlighted.
基金supported by the Galway University Foundationthe University of Limerick Foundationthe National Biophotonics Imaging Platform(NBIP)Ireland,funded under the Higher Education Authority PRTLI Cycle 4,co-funded by the Irish Government and the European Union Investing in your future,and Compact Imaging,Inc
文摘Multiple reference optical coherence tomography(MR-OCT) is a recently developed, low-cost and compact time-domain OCT solution for primary care and consumer level applications. A combination of a voice coil actuator and a partial mirror(PM) extends the scan range for imaging depths of approximately 1 mm in biological samples. Our previous research on MR-OCT is based only on intensity information obtained from the depth-resolved interference signal. In this Letter, we extract the phase information from the MR-OCT signal and, hence, provide an additional contrast modality. The phase sensitivity of the system is measured to be approximately 0.2 and 1.5 rad for the first and twelfth orders of reflection when using a mirror as the sample.This Letter describes first results of phase-sensitive data measured on a phantom obtained with MR-OCT. Data from a chick embryo chorioallantoic membrane(CAM) is used to demonstrate the feasibility of MR-OCT for in vivo phase-sensitive imaging.