Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration...Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration(DFM)may have a major effect due to the target maneuverability.This paper proposed an innovative long-time coherent integration approach,regarded as Continuous Radon-matched filtering process(CRMFP),for low-observable UAV target in passive bistatic radar.It not only mitigates the RM by collaborative research in range and velocity dimensions but also compensates the DFM and ensures the coherent integration through the matched filtering process(MFP).Numerical and real-life data following detailed analysis verify that the proposed method can overcome the Doppler mismatch influence and acquire comparable detection performance.展开更多
Optical-resolution photoacoustic microscopy(OR-PAM)has rapidly developed and is capable of characterizing optical absorption properties of biological tissue with high contrast and high resolution(micrometer-scale late...Optical-resolution photoacoustic microscopy(OR-PAM)has rapidly developed and is capable of characterizing optical absorption properties of biological tissue with high contrast and high resolution(micrometer-scale lateral resolution).However,the conventional excitation source of rapidly diverging Gaussian beam imposes limitations on the depth of focus(DOF)in OR-PAM,which in turn affects the depth-resolving ability and detection sensitivity.Here,we proposed a flexible DOF,depth-invariant resolution photoacoustic microscopy(FDIR-PAM)with nondiffraction of Airy beams.The spatial light modulator was incorporated into the optical pathway of the excitation source with matched switching phase patterns,achieving the flexibly adjustable modulation parameters of the Airy beam.We conducted experiments on phantoms and intravital tissue to validate the effectiveness of the proposed approach for high sensitivity and highresolution characterization of variable topology of tissue,offering a promising DOF of 926μm with an invariant lateral resolution of 3.2μm,which is more than 17-fold larger compared to the Gaussian beam.In addition,FDIR-PAM successfully revealed clear individual zebrafish larvae and the pigment pattern of adult zebrafishes,as well as fine morphology of cerebral vasculature in a large depth range with high resolution,which has reached an evident resolving capability improvement of 62%mean value compared with the Gaussian beam.展开更多
In view of the many scenes of unmanned aerial vehicle(UAV)detection,a third-party signal source is used to design a receiver to monitor the UAV.It is of great significance to understand the reflection of the signal il...In view of the many scenes of unmanned aerial vehicle(UAV)detection,a third-party signal source is used to design a receiver to monitor the UAV.It is of great significance to understand the reflection of the signal illuminating the UAV.Taking the communication base station(BS)signal as the third-party signal source,and considering the complete transmission link,reflection changes and loss fading of the communication signal,this study conducts model fitting for irregular UAV targets,simplifying complex targets into a combination of simple targets.Furthermore,the influence of the dielectric constant of the target surface and the signal irradiation angle on the signal reflection is analyzed.The analysis shows that the simulation results of this model fitting method are consistent with the results of other literature,which provides theoretical support for the detection of low and slow small targets such as UAVs.展开更多
A miniaturized neutron spin flipper based on a high-TC superconductor film,developed at the China Spallation Neutron Source(CSNS),is presented.A neutron spin flipper is an essential component for performing polarized ...A miniaturized neutron spin flipper based on a high-TC superconductor film,developed at the China Spallation Neutron Source(CSNS),is presented.A neutron spin flipper is an essential component for performing polarized neutron experiments and,as such,constitutes a high priority for developing CSNS’s polarized neutron capability.To provide the beamlines with a universal neutron spin flipper operating over a wide wavelength band,the neutron spin flipper utilizes non-adiabatic spin flipping during transit through opposite magnetic fields that are mutually shielded by the superconductor Meissner effect.A compact vacuum heat shield and a low-power consumption sterling refrigerator maintained the superconducting condition while reducing the size and power input of the flipper.The prototype device was tested at the CSNS BL-20,which demonstrated a flipping efficiency of 99%at 4 A°.展开更多
In today’s world,smart electric vehicles are deeply integrated with smart energy,smart transportation and smart cities.In electric vehicles(EVs),owing to the harsh working conditions,mechanical parts are prone to fat...In today’s world,smart electric vehicles are deeply integrated with smart energy,smart transportation and smart cities.In electric vehicles(EVs),owing to the harsh working conditions,mechanical parts are prone to fatigue damages,which endanger the driving safety of EVs.The practice has proved that the identification of periodic impact characteristics(PICs)can effectively indicate mechanical faults.This paper proposes a novel model-based approach for intelligent fault diagnosis ofmechanical transmission train in EVs.The essential idea of this approach lies in the fusion of statistical information and model information froma dynamic process.In the algorithm,a novel fractal wavelet decomposition(FWD)is used to investigate the time-frequency representation of the input signal.Based on the sparsity of the PIC model in the Hilbert envelope spectrum,amethod for evaluating PIC energy ratio(PICER)is defined based on an over-complete Fourier dictionary.A compound indicator considering kurtosis and PICER of dynamic signal is designed.Using this index,evaluations of the impulsiveness of the cycle-stationary process can be enabled,thus avoiding serious interference from the sporadic impact during measurements.The robustness of the proposed approach to noise is demonstrated via numerical simulations,and an engineering application is employed to validate its effectiveness.展开更多
A large,fully steerable radio telescope is susceptible to the wind load,leading to structure deformation andpointing deviation of the telescope.To effectively suppress the influence of dynamic wind load,the wind resis...A large,fully steerable radio telescope is susceptible to the wind load,leading to structure deformation andpointing deviation of the telescope.To effectively suppress the influence of dynamic wind load,the wind resistancecontrol of the telescope is carried out based on wind speed forecasting.This study developed a wind speedforecasting model to efficiently forecast the wind speed at the telescope position.The proposed model successfullyeliminates the random noise of the original wind speed,effectively extracts the wind speed features and solves theautomatic optimization of the hyperparameters of the forecasting network.This model significantly improves theaccuracy and reliability of wind speed forecasting.To verify the forecasting performance of the proposed model,the wind data from the Qitai Radio Telescope site is examined as a case study.The wind speed forecasting model’sMAE,RMSE and MAPE are 0.0361,0.0703 and 3.87%,respectively.The performance of the proposed modelmeets the requirements of wind resistance control and can provide data support for the radio telescope.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf ava...In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.展开更多
Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps t...Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps teachers to better implement course teaching.However,a lack of evaluation models for the fusion of temporal and non-temporal behavioral data leads to an unsatisfactory evaluation effect.To meet the demand for predicting students’academic performance through learning behavior data,this study proposes a learning effect evaluation method that integrates expert perspective indicators to predict academic performance by constructing a dual-stream network that combines temporal behavior data and non-temporal behavior data in the learning process.In this paper,firstly,the Delphi method is used to analyze and process the course learning behavior data of students and establish an effective evaluation index system of learning behavior with universality;secondly,the Mann-Whitney U-test and the complex correlation analysis are used to analyze further and validate the evaluation indexes;and lastly,a dual-stream information fusion model,which combines temporal and non-temporal features,is established.The learning effect evaluation model is built,and the results of the mean absolute error(MAE)and root mean square error(RMSE)indexes are 4.16 and 5.29,respectively.This study indicates that combining expert perspectives for evaluation index selection and further fusing temporal and non-temporal behavioral features that for learning effect evaluation and prediction is rationality,accuracy,and effectiveness,which provides a powerful help for the practical application of learning effect evaluation and prediction.展开更多
Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approac...Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.展开更多
Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points...Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.展开更多
We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors(HEMTs)with thin-barrier to minimize surface leakage current to enhance the breakdown voltage.The bilay...We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors(HEMTs)with thin-barrier to minimize surface leakage current to enhance the breakdown voltage.The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si_(3)N_(4) was deposited by plasma-enhanced chemical vapor deposition(PECVD)after removing 20-nm SiO_(2)pre-deposition layer.Compared to traditional Si_(3)N_(4) passivation for thin-barrier AlGaN/GaN HEMTs,Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54%to 8.40%.However,Si-rich bilayer passivation leads to a severer surface leakage current,so that it has a low breakdown voltage.The 20-nm SiO_(2)pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga–O bonds,resulting in a lower surface leakage current.In contrast to passivating Si-rich SiN directly,devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V.Radio frequency(RF)small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to f_(T)/f_(max) of 68 GHz/102 GHz.At 30 GHz and V_(DS)=20 V,devices achieve a maximum P_(out) of 5.2 W/mm and a peak power-added efficiency(PAE)of 42.2%.These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.展开更多
Structured illumination microscopy(SIM)is an established optical superresolution imaging technique.However,conventional SIM based on wide-field image acquisition is generally limited to visualizing thin cellular sampl...Structured illumination microscopy(SIM)is an established optical superresolution imaging technique.However,conventional SIM based on wide-field image acquisition is generally limited to visualizing thin cellular samples.We propose combining one-dimensional image rescan and structured illumination in the orthogonal direction to achieve superresolution without the need to rotate the illumination pattern.The image acquisition speed is consequently improved threefold,which is also beneficial for minimizing photobleaching and phototoxicity.Optical sectioning in thick biological tissue is enhanced by including a confocal slit in the system to significantly suppress the out-of-focus background and the associated noise.With all the technical improvements,our method captures threedimensional superresolved image stacks of neuronal structures in mouse brain tissue samples for a depth range of more than 200μm.展开更多
We demonstrated an AlGaN/GaN high electron mobility transistor(HEMT)namely double-Vthcoupling HEMT(DVC-HEMT)fabricated by connecting different threshold voltage(Vth)values including the slant recess element and planar...We demonstrated an AlGaN/GaN high electron mobility transistor(HEMT)namely double-Vthcoupling HEMT(DVC-HEMT)fabricated by connecting different threshold voltage(Vth)values including the slant recess element and planar element in parallel along the gate width with N;O plasma treatment on the gate region.The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance(Gm)and radio frequency(RF)output signal characteristics in DVC-HEMT.The fabricated device shows the transconductance plateau larger than 7 V,which yields a flattened fT/fmax-gate bias dependence.At the operating frequency of 30 GHz,the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm.Furthermore,the proposed architecture also features an exceptional linearity performance with 1-d B compression point(P1 d B)of 28 d Bm,whereas that of the Fin-like HEMT is 25.2 d Bm.The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.展开更多
Obtaining the wind load distribution on the telescope aperture is very important to estimate its influence and reduce the wind disturbance on the telescope system.The aperture of the radio telescope structure can be a...Obtaining the wind load distribution on the telescope aperture is very important to estimate its influence and reduce the wind disturbance on the telescope system.The aperture of the radio telescope structure can be as large as 100 m and therefore,the uniform wind load on the aperture assumption is not suitable for the radio telescope with large aperture.In this paper,a gradient segments superposition method for calculating the wind load has been proposed.The proposed method has been constructed by combining two regional divisions.First,reflecting surface has been evenly divided in the altitudinal direction.Second,the reflecting surface has been divided into several uniform rings assuming that the wind load coefficient on different rings are different.For the 110 m aperture radio telescope,the wind load estimation results differ by 28%.After that,a structural dynamics model of telescope has been established and a fuzzy PID controller has been designed to reduce wind disturbance.The Root Mean Square Error of telescope pointing under wind disturbance has been reduced by 67.8%.It is suggested that the proposed wind load estimation method has lay a solid foundation for the design of the large telescope system under wind disturbance.展开更多
Large steerable radio telescopes can rotate in azimuth and elevation,with various upwind postures and complex wind load characteristics.In order to obtain the wind load distribution on the reflector and the wind force...Large steerable radio telescopes can rotate in azimuth and elevation,with various upwind postures and complex wind load characteristics.In order to obtain the wind load distribution on the reflector and the wind force coefficients in different upwind postures,this work took the reflector of the Qi Tai Telescope in Xinjiang as the object.The wind pressure distribution,drag coefficient,side force coefficient,lift coefficient,and total force coefficient of 361 groups of reflectors with different upwind postures were calculated and analyzed by a numerical simulation method.The results show that the force on the reflector when the concave surface faces the wind is significantly greater than when the convex surface faces the wind.The surrogate models for calculating wind force coefficients were established based on the polynomial response surface model(PRSM) and regularized minimumenergy tensor-product spline(RMTS).The adjusted R-squared of RMTS is 0.98,and the root mean square error is below 0.1,which proves RMTS is significantly better than PRSM.Compared with the numerical simulation values,the absolute errors of the drag coefficient,side force coefficient,lift coefficient,and total force coefficient of the reflector with azimuth and elevation of 45° predicted by RMTS are 0.02,0.027,0.032,and 0.046,respectively.The relative errors are 2.42%,2.76%,2.23%,and 2.43%,respectively.It is proved that the RMTS surrogate model is reliable and that the predicted data can fast provide sufficient information for the wind-resistant design of the large steerable radio telescopes.展开更多
Metal halide perovskites(MHPs)photodetectors(PDs)exhibiting outstanding and tunable photoelectric properties have attracted extensive global attention owing to their low-temperature solution-processable fabrication,li...Metal halide perovskites(MHPs)photodetectors(PDs)exhibiting outstanding and tunable photoelectric properties have attracted extensive global attention owing to their low-temperature solution-processable fabrication,lightweight nature,and flexibility.1However,MHPs-based PDs still face challenges of high and unstable dark current,which limit their operational stability and practical applications.展开更多
Polarized-sensitive image sensors are a kind of photodetector with great development potential due to their enhanced ability to detect and identify the target objects from the aspect of spatial,spectral and polarized ...Polarized-sensitive image sensors are a kind of photodetector with great development potential due to their enhanced ability to detect and identify the target objects from the aspect of spatial,spectral and polarized information.Recently,low-dimensional anisotropic materials with inherent anisotropic properties,ultrathin thickness,tunable bandgap and feasible integration with complementary metal oxide semiconductor(CMOS)fabrication processes have attracted great interest for their facilitation of polarized photodetector devices miniaturization.Maximizing the polarized detection performance of low-dimensional materials to satisfy realistic needs stimulates the exploration of modulation of anisotropic properties.In this review,we comprehensively introduce the latest research progress in modulating the optical and optoelectronic anisotropy characteristics of low-dimensional materials.The strategy of anisotropy regulation through crystal structure engineering and coupling system is discussed emphatically.Then,the latest progress in image recognition applications using anisotropic low-dimensional materials is reviewed in detail.Finally,we summarize the challenge and propose future opportunities in the practical application of polarized-sensitive imaging photodetectors based on low-dimensional anisotropic materials.展开更多
The efficiency of conventional quantum well light-emitting diodes(LEDs) decreases drastically with reducing areal size. Here we show that such a critical size scaling issue of LEDs can be addressed by utilizing N-pola...The efficiency of conventional quantum well light-emitting diodes(LEDs) decreases drastically with reducing areal size. Here we show that such a critical size scaling issue of LEDs can be addressed by utilizing N-polar In Ga N nanowires. We studied the epitaxy and performance characteristics of N-polar In Ga N nanowire LEDs grown on sapphire substrate by plasma-assisted molecular beam epitaxy. A maximum external quantum efficiency-11% was measured for LEDs with lateral dimensions as small as 750 nm directly on wafer without any packaging. The effect of electron overflow and Auger recombination on the device performance is also studied. This work provides a viable approach for achieving high-efficiency nano and micro LEDs that were not previously possible.展开更多
The constraints arising from the quantum mechanical symmetry on wavefunctions, and the effect of the constraints on the structures and internal notions of quantum states are studied.
基金supported by the National Natural Science Foundation of China (Nos.51975447,52275268)National Key Research and Development Program of China (No.2021YFC2203600)+2 种基金National Defense Basic Scientific Research Program of China (No.JCKY2021210B007)the Project about Building up“Scientists+Engineers”of Shaanxi Qinchuangyuan Platform (No.2022KXJ-030)Wuhu and Xidian University Special Fund for Industry University Research Cooperation (No.XWYCXY012021-012)。
文摘Long-time integration technique is an effective way of improving target detection performance for unmanned aerial vehicle(UAV)in the passive bistatic radar(PBR),while range migration(RM)and Doppler frequency migration(DFM)may have a major effect due to the target maneuverability.This paper proposed an innovative long-time coherent integration approach,regarded as Continuous Radon-matched filtering process(CRMFP),for low-observable UAV target in passive bistatic radar.It not only mitigates the RM by collaborative research in range and velocity dimensions but also compensates the DFM and ensures the coherent integration through the matched filtering process(MFP).Numerical and real-life data following detailed analysis verify that the proposed method can overcome the Doppler mismatch influence and acquire comparable detection performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105255 and 62275210)the Xidian University Specially Funded Project for Interdisciplinary Exploration(Grant No.TZJH2024043)+1 种基金the Key Research and Development Program of Shaanxi Province(Grant No.2023-YBSF-293)the National Young Talent Program and Shaanxi Young Top-notch Talent Program,and the Fundamental Research Funds for CentralUniversities(Grant No.ZYTS23187).
文摘Optical-resolution photoacoustic microscopy(OR-PAM)has rapidly developed and is capable of characterizing optical absorption properties of biological tissue with high contrast and high resolution(micrometer-scale lateral resolution).However,the conventional excitation source of rapidly diverging Gaussian beam imposes limitations on the depth of focus(DOF)in OR-PAM,which in turn affects the depth-resolving ability and detection sensitivity.Here,we proposed a flexible DOF,depth-invariant resolution photoacoustic microscopy(FDIR-PAM)with nondiffraction of Airy beams.The spatial light modulator was incorporated into the optical pathway of the excitation source with matched switching phase patterns,achieving the flexibly adjustable modulation parameters of the Airy beam.We conducted experiments on phantoms and intravital tissue to validate the effectiveness of the proposed approach for high sensitivity and highresolution characterization of variable topology of tissue,offering a promising DOF of 926μm with an invariant lateral resolution of 3.2μm,which is more than 17-fold larger compared to the Gaussian beam.In addition,FDIR-PAM successfully revealed clear individual zebrafish larvae and the pigment pattern of adult zebrafishes,as well as fine morphology of cerebral vasculature in a large depth range with high resolution,which has reached an evident resolving capability improvement of 62%mean value compared with the Gaussian beam.
基金supported by the State Major Research and Development Project(2018YFB1802004)the State Key Laboratory of Air Traffic Management System and Technology(SKLATM201807)。
文摘In view of the many scenes of unmanned aerial vehicle(UAV)detection,a third-party signal source is used to design a receiver to monitor the UAV.It is of great significance to understand the reflection of the signal illuminating the UAV.Taking the communication base station(BS)signal as the third-party signal source,and considering the complete transmission link,reflection changes and loss fading of the communication signal,this study conducts model fitting for irregular UAV targets,simplifying complex targets into a combination of simple targets.Furthermore,the influence of the dielectric constant of the target surface and the signal irradiation angle on the signal reflection is analyzed.The analysis shows that the simulation results of this model fitting method are consistent with the results of other literature,which provides theoretical support for the detection of low and slow small targets such as UAVs.
基金supported by the National Key Research and Development Program of China(No.2020YFA0406000)the National Natural Science Foundation of China(Nos.12075265 and U2032219)+2 种基金The 3He spin filter implemented in the experiment was developed within the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.ZDKYYQ20190004)the Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents(No.20191122)The magnetic field simulation and analysis work were supported by Guangdong Natural Science Funds for Distinguished Young Scholars.
文摘A miniaturized neutron spin flipper based on a high-TC superconductor film,developed at the China Spallation Neutron Source(CSNS),is presented.A neutron spin flipper is an essential component for performing polarized neutron experiments and,as such,constitutes a high priority for developing CSNS’s polarized neutron capability.To provide the beamlines with a universal neutron spin flipper operating over a wide wavelength band,the neutron spin flipper utilizes non-adiabatic spin flipping during transit through opposite magnetic fields that are mutually shielded by the superconductor Meissner effect.A compact vacuum heat shield and a low-power consumption sterling refrigerator maintained the superconducting condition while reducing the size and power input of the flipper.The prototype device was tested at the CSNS BL-20,which demonstrated a flipping efficiency of 99%at 4 A°.
基金This research is supported financially by the NationalNatural Science Foundation of China(Grant No.51805398)the Natural Science Basic Research Program of Shaanxi(Grant No.2023-JC-YB-289)+1 种基金the Project of Youth Talent Lift Program of Shaanxi University Association for Science and Technology(Grant No.20200408)the Fundamental Research Funds for the Central Universities(Grant No.JB211303).
文摘In today’s world,smart electric vehicles are deeply integrated with smart energy,smart transportation and smart cities.In electric vehicles(EVs),owing to the harsh working conditions,mechanical parts are prone to fatigue damages,which endanger the driving safety of EVs.The practice has proved that the identification of periodic impact characteristics(PICs)can effectively indicate mechanical faults.This paper proposes a novel model-based approach for intelligent fault diagnosis ofmechanical transmission train in EVs.The essential idea of this approach lies in the fusion of statistical information and model information froma dynamic process.In the algorithm,a novel fractal wavelet decomposition(FWD)is used to investigate the time-frequency representation of the input signal.Based on the sparsity of the PIC model in the Hilbert envelope spectrum,amethod for evaluating PIC energy ratio(PICER)is defined based on an over-complete Fourier dictionary.A compound indicator considering kurtosis and PICER of dynamic signal is designed.Using this index,evaluations of the impulsiveness of the cycle-stationary process can be enabled,thus avoiding serious interference from the sporadic impact during measurements.The robustness of the proposed approach to noise is demonstrated via numerical simulations,and an engineering application is employed to validate its effectiveness.
基金the National Key Research and Development Program of China(grant No.2021YFC2203600)National Natural Science Foundation of China(NSFC,grant No.52275268)+3 种基金National Defense Basic Scientific Research Program of China(grant No.JCKY2021210B007)Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation(grant No.XWYCXY-012021012)Youth Innovation Team of Shaanxi Universities(grant No.201926)Fundamental Research Funds for the Central Universities(grant No.XJSJ23122).
文摘A large,fully steerable radio telescope is susceptible to the wind load,leading to structure deformation andpointing deviation of the telescope.To effectively suppress the influence of dynamic wind load,the wind resistancecontrol of the telescope is carried out based on wind speed forecasting.This study developed a wind speedforecasting model to efficiently forecast the wind speed at the telescope position.The proposed model successfullyeliminates the random noise of the original wind speed,effectively extracts the wind speed features and solves theautomatic optimization of the hyperparameters of the forecasting network.This model significantly improves theaccuracy and reliability of wind speed forecasting.To verify the forecasting performance of the proposed model,the wind data from the Qitai Radio Telescope site is examined as a case study.The wind speed forecasting model’sMAE,RMSE and MAPE are 0.0361,0.0703 and 3.87%,respectively.The performance of the proposed modelmeets the requirements of wind resistance control and can provide data support for the radio telescope.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金partially supported by the Foundation of State Key Laboratory of Public Big Data(No.PBD2022-01).
文摘In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.
基金supported by the National Key R&D Program of China(2022YFB3203800)National Natural Science Foundation of China(62007026)+2 种基金National Young Talent Program,Shaanxi Young Top-notch Talent Program,Key Research and Development Program of Shaanxi(2022GY-313)Xi’an Science and Technology Project(23ZDCYJSGG0026-2023)the Fundamental Research Funds for Central Universities(ZYTS23192).
文摘Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps teachers to better implement course teaching.However,a lack of evaluation models for the fusion of temporal and non-temporal behavioral data leads to an unsatisfactory evaluation effect.To meet the demand for predicting students’academic performance through learning behavior data,this study proposes a learning effect evaluation method that integrates expert perspective indicators to predict academic performance by constructing a dual-stream network that combines temporal behavior data and non-temporal behavior data in the learning process.In this paper,firstly,the Delphi method is used to analyze and process the course learning behavior data of students and establish an effective evaluation index system of learning behavior with universality;secondly,the Mann-Whitney U-test and the complex correlation analysis are used to analyze further and validate the evaluation indexes;and lastly,a dual-stream information fusion model,which combines temporal and non-temporal features,is established.The learning effect evaluation model is built,and the results of the mean absolute error(MAE)and root mean square error(RMSE)indexes are 4.16 and 5.29,respectively.This study indicates that combining expert perspectives for evaluation index selection and further fusing temporal and non-temporal behavioral features that for learning effect evaluation and prediction is rationality,accuracy,and effectiveness,which provides a powerful help for the practical application of learning effect evaluation and prediction.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2700600the National Natural Science Foundation of China under Grant No.62132013+5 种基金the Key Research and Development Programs of Shaanxi under Grant Nos.S2024-YF-YBGY-1540 and 2021ZDLGY06-03the Basic Strengthening Plan Program under Grant No.2023-JCJQ-JJ-0772the Key-Area Research and Development Program of Guangdong Province under Grant No.2021B0101400003Hong Kong RGC Research Impact Fund under Grant Nos.R5060-19 and R5034-18Areas of Excellence Scheme under Grant No.Ao E/E-601/22-RGeneral Research Fund under Grant Nos.152203/20E,152244/21E,152169/22E and152228/23E。
文摘Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.
基金supported by the National Natural Science Foundation of China(62101415)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110757).
文摘Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB1804902)the National Natural Science Foundation of China(Grant Nos.61904135,62090014,and 11690042)+4 种基金the Fundamental Research Funds for the Central Universities,the Innovation Fund of Xidian University(Grant No.YJS2213)the China Postdoctoral Science Foundation(Grant Nos.2018M640957 and BX20200262)the Key Research and Development Program of Guangzhou(Grant No.202103020002)Wuhu and Xidian University Special Fund for Industry–University-Research Cooperation(Grant No.XWYCXY-012021014HT)the Fundamental Research Funds for the Central Universities,China(Grant No.XJS221110)。
文摘We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors(HEMTs)with thin-barrier to minimize surface leakage current to enhance the breakdown voltage.The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si_(3)N_(4) was deposited by plasma-enhanced chemical vapor deposition(PECVD)after removing 20-nm SiO_(2)pre-deposition layer.Compared to traditional Si_(3)N_(4) passivation for thin-barrier AlGaN/GaN HEMTs,Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54%to 8.40%.However,Si-rich bilayer passivation leads to a severer surface leakage current,so that it has a low breakdown voltage.The 20-nm SiO_(2)pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga–O bonds,resulting in a lower surface leakage current.In contrast to passivating Si-rich SiN directly,devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V.Radio frequency(RF)small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to f_(T)/f_(max) of 68 GHz/102 GHz.At 30 GHz and V_(DS)=20 V,devices achieve a maximum P_(out) of 5.2 W/mm and a peak power-added efficiency(PAE)of 42.2%.These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.
基金supported by the Ministry of Education-Singapore(Grant Nos.MOE2019-T2-2-094 and MOE Tier I R-397-000-327-114)Shenzhen Science and Technology Program(Grant No.GJHZ20210705141805015).
文摘Structured illumination microscopy(SIM)is an established optical superresolution imaging technique.However,conventional SIM based on wide-field image acquisition is generally limited to visualizing thin cellular samples.We propose combining one-dimensional image rescan and structured illumination in the orthogonal direction to achieve superresolution without the need to rotate the illumination pattern.The image acquisition speed is consequently improved threefold,which is also beneficial for minimizing photobleaching and phototoxicity.Optical sectioning in thick biological tissue is enhanced by including a confocal slit in the system to significantly suppress the out-of-focus background and the associated noise.With all the technical improvements,our method captures threedimensional superresolved image stacks of neuronal structures in mouse brain tissue samples for a depth range of more than 200μm.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1804902)the Fundamental Research Funds for the Central Universities+3 种基金the Innovation Fund of Xidian Universitythe National Natural Science Foundation of China(Grant No.61904135)the China Postdoctoral Science Foundation(Grant Nos.2018M640957 and BX20200262)the Research and Development Plan of Key Fields in Guangzhou(Grant No.202103020002)。
文摘We demonstrated an AlGaN/GaN high electron mobility transistor(HEMT)namely double-Vthcoupling HEMT(DVC-HEMT)fabricated by connecting different threshold voltage(Vth)values including the slant recess element and planar element in parallel along the gate width with N;O plasma treatment on the gate region.The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance(Gm)and radio frequency(RF)output signal characteristics in DVC-HEMT.The fabricated device shows the transconductance plateau larger than 7 V,which yields a flattened fT/fmax-gate bias dependence.At the operating frequency of 30 GHz,the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm.Furthermore,the proposed architecture also features an exceptional linearity performance with 1-d B compression point(P1 d B)of 28 d Bm,whereas that of the Fin-like HEMT is 25.2 d Bm.The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.
基金the National Key Research and Development Program of China under No.2021YFC2203600the National Natural Science Foundation of China under Nos.52005377 and 52275268+2 种基金the National Defense Basic Scientific Research Program of China under No.JCKY2021210B007Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation under No.XWYCXY-012021012Youth Innovation Team of Shaanxi Universities under No.201926.
文摘Obtaining the wind load distribution on the telescope aperture is very important to estimate its influence and reduce the wind disturbance on the telescope system.The aperture of the radio telescope structure can be as large as 100 m and therefore,the uniform wind load on the aperture assumption is not suitable for the radio telescope with large aperture.In this paper,a gradient segments superposition method for calculating the wind load has been proposed.The proposed method has been constructed by combining two regional divisions.First,reflecting surface has been evenly divided in the altitudinal direction.Second,the reflecting surface has been divided into several uniform rings assuming that the wind load coefficient on different rings are different.For the 110 m aperture radio telescope,the wind load estimation results differ by 28%.After that,a structural dynamics model of telescope has been established and a fuzzy PID controller has been designed to reduce wind disturbance.The Root Mean Square Error of telescope pointing under wind disturbance has been reduced by 67.8%.It is suggested that the proposed wind load estimation method has lay a solid foundation for the design of the large telescope system under wind disturbance.
基金supported by the National Key Research and Development Program of China(grant No.2021YFC2203600)the National Natural Science Foundation of China(Grant Nos.52275268 and 51975447)+2 种基金the National Defense Basic Scientific Research Program of China(Grant No.JCKY2021210B007)Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation(Grant No.XWYCXY-012021012)Youth Innovation Team of Shaanxi Universities(Grant No.201926)。
文摘Large steerable radio telescopes can rotate in azimuth and elevation,with various upwind postures and complex wind load characteristics.In order to obtain the wind load distribution on the reflector and the wind force coefficients in different upwind postures,this work took the reflector of the Qi Tai Telescope in Xinjiang as the object.The wind pressure distribution,drag coefficient,side force coefficient,lift coefficient,and total force coefficient of 361 groups of reflectors with different upwind postures were calculated and analyzed by a numerical simulation method.The results show that the force on the reflector when the concave surface faces the wind is significantly greater than when the convex surface faces the wind.The surrogate models for calculating wind force coefficients were established based on the polynomial response surface model(PRSM) and regularized minimumenergy tensor-product spline(RMTS).The adjusted R-squared of RMTS is 0.98,and the root mean square error is below 0.1,which proves RMTS is significantly better than PRSM.Compared with the numerical simulation values,the absolute errors of the drag coefficient,side force coefficient,lift coefficient,and total force coefficient of the reflector with azimuth and elevation of 45° predicted by RMTS are 0.02,0.027,0.032,and 0.046,respectively.The relative errors are 2.42%,2.76%,2.23%,and 2.43%,respectively.It is proved that the RMTS surrogate model is reliable and that the predicted data can fast provide sufficient information for the wind-resistant design of the large steerable radio telescopes.
文摘Metal halide perovskites(MHPs)photodetectors(PDs)exhibiting outstanding and tunable photoelectric properties have attracted extensive global attention owing to their low-temperature solution-processable fabrication,lightweight nature,and flexibility.1However,MHPs-based PDs still face challenges of high and unstable dark current,which limit their operational stability and practical applications.
基金financially supported by Fundamental Research Funds for the Central Universities(Nos.10251210015,ZYTS23089 and 2020JCW-15)Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515110013 and 2021A1515110888)+1 种基金National Natural Science Foundation of China(Nos.22305182,51972204,22222505,21901195 and 22375121)Natural Science Basic Research Program of Shaanxi(Nos.2023-JCQN-0508 and 2023-JC-QN-0104)。
文摘Polarized-sensitive image sensors are a kind of photodetector with great development potential due to their enhanced ability to detect and identify the target objects from the aspect of spatial,spectral and polarized information.Recently,low-dimensional anisotropic materials with inherent anisotropic properties,ultrathin thickness,tunable bandgap and feasible integration with complementary metal oxide semiconductor(CMOS)fabrication processes have attracted great interest for their facilitation of polarized photodetector devices miniaturization.Maximizing the polarized detection performance of low-dimensional materials to satisfy realistic needs stimulates the exploration of modulation of anisotropic properties.In this review,we comprehensively introduce the latest research progress in modulating the optical and optoelectronic anisotropy characteristics of low-dimensional materials.The strategy of anisotropy regulation through crystal structure engineering and coupling system is discussed emphatically.Then,the latest progress in image recognition applications using anisotropic low-dimensional materials is reviewed in detail.Finally,we summarize the challenge and propose future opportunities in the practical application of polarized-sensitive imaging photodetectors based on low-dimensional anisotropic materials.
文摘The efficiency of conventional quantum well light-emitting diodes(LEDs) decreases drastically with reducing areal size. Here we show that such a critical size scaling issue of LEDs can be addressed by utilizing N-polar In Ga N nanowires. We studied the epitaxy and performance characteristics of N-polar In Ga N nanowire LEDs grown on sapphire substrate by plasma-assisted molecular beam epitaxy. A maximum external quantum efficiency-11% was measured for LEDs with lateral dimensions as small as 750 nm directly on wafer without any packaging. The effect of electron overflow and Auger recombination on the device performance is also studied. This work provides a viable approach for achieving high-efficiency nano and micro LEDs that were not previously possible.
基金the National Natural Science Foundation of China
文摘The constraints arising from the quantum mechanical symmetry on wavefunctions, and the effect of the constraints on the structures and internal notions of quantum states are studied.