A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein. A new type "NCB" cogeneration steam turbine was proposed,which could considerably i...A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein. A new type "NCB" cogeneration steam turbine was proposed,which could considerably increase heat supply capacity,thermal efficiency and electric power. Taking 300 MW cogeneration steam turbine as an example,the results show that heat supply capacity reaches the maximum,i.e. increases by 30 %,thermal efficiency is improved by 12 %,and electric power is enhanced by 15 MW during peak heat load.展开更多
Solid particle erosion (SPE) in an ultra-supercritical steam turbine control stage with block configuration is investigatednumerically, based on the finite volume method and the fluid-particle coupling solver. We appl...Solid particle erosion (SPE) in an ultra-supercritical steam turbine control stage with block configuration is investigatednumerically, based on the finite volume method and the fluid-particle coupling solver. We apply the particlediscrete phase model to model the solid particles flow, and use the Euler conservation equations to solve thecontinuous phase. The investigation is focused on the influence of the solid particle parameters (such as particlediameter, particle velocity and particle trajectory) on the erosion rate of the stator and rotor blade surface in unsteadycondition. The distributions of the highly eroded zone on the stator and rotor blade surfaces are shown anddiscussed in detail according to the mechanism of solid particle/blade wall interaction. We obtain that the erosionrate of the vane blade is sensitive to the fluctuation of the potential flow field, and the smaller particle has agreater impact on the erosion distribution of rotor blade. The erosion rate does not entirely depend on the diametersize of the solid particle.展开更多
In this paper,the composite inner cooling structures of the rotating blade in the first stage heavy gas turbine were modeled and simulated by coupling heat transfer (CHT).The flow characteristics and heat transfer per...In this paper,the composite inner cooling structures of the rotating blade in the first stage heavy gas turbine were modeled and simulated by coupling heat transfer (CHT).The flow characteristics and heat transfer performances were comparatively analyzed under two operations of the stationary and the rotational states.The results show that the turbulence intensity,the flow resistance and the heat transfer level of the rotating coolant are significantly increased compared with the stationary state,which is considered to be obtained by the combined effects of the Coriolis force,the centrifugal force and their derived buoyancy forces.It is pointed out that the rotation leads to the non-uniform flow of film holes at the leading edge of the pressure surface along blade height.In addition,it increases the slope of the limiting streamline,which has a decisive influence on the heat transfer of both the pressure and suction surfaces.The paper provides guidance for the design of a rotating composite cooling structure based on the relations between the stationary and rotational conditions.展开更多
文摘A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein. A new type "NCB" cogeneration steam turbine was proposed,which could considerably increase heat supply capacity,thermal efficiency and electric power. Taking 300 MW cogeneration steam turbine as an example,the results show that heat supply capacity reaches the maximum,i.e. increases by 30 %,thermal efficiency is improved by 12 %,and electric power is enhanced by 15 MW during peak heat load.
文摘Solid particle erosion (SPE) in an ultra-supercritical steam turbine control stage with block configuration is investigatednumerically, based on the finite volume method and the fluid-particle coupling solver. We apply the particlediscrete phase model to model the solid particles flow, and use the Euler conservation equations to solve thecontinuous phase. The investigation is focused on the influence of the solid particle parameters (such as particlediameter, particle velocity and particle trajectory) on the erosion rate of the stator and rotor blade surface in unsteadycondition. The distributions of the highly eroded zone on the stator and rotor blade surfaces are shown anddiscussed in detail according to the mechanism of solid particle/blade wall interaction. We obtain that the erosionrate of the vane blade is sensitive to the fluctuation of the potential flow field, and the smaller particle has agreater impact on the erosion distribution of rotor blade. The erosion rate does not entirely depend on the diametersize of the solid particle.
基金This research work was funded by the Foundation for Innovative Research Groups of National Nature Science Foundation of China(Grant No.51121004).
文摘In this paper,the composite inner cooling structures of the rotating blade in the first stage heavy gas turbine were modeled and simulated by coupling heat transfer (CHT).The flow characteristics and heat transfer performances were comparatively analyzed under two operations of the stationary and the rotational states.The results show that the turbulence intensity,the flow resistance and the heat transfer level of the rotating coolant are significantly increased compared with the stationary state,which is considered to be obtained by the combined effects of the Coriolis force,the centrifugal force and their derived buoyancy forces.It is pointed out that the rotation leads to the non-uniform flow of film holes at the leading edge of the pressure surface along blade height.In addition,it increases the slope of the limiting streamline,which has a decisive influence on the heat transfer of both the pressure and suction surfaces.The paper provides guidance for the design of a rotating composite cooling structure based on the relations between the stationary and rotational conditions.