期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
通过添加微量Mn元素激活非基面滑移提高镁合金塑性 被引量:1
1
作者 周世博 刘婷婷 +5 位作者 汤爱涛 时慧 敬学锐 彭鹏 章建跃 潘复生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第2期504-518,共15页
分析微量锰添加对镁合金显微组织和力学性能的影响。采用电子背散射技术、迹线分析、透射电镜和粘塑性自洽模拟等方法研究变形过程中的塑性变形机理。结果表明:Mn的加入使Mg−Mn合金的平均晶粒尺寸由28.30μm减小到5.10μm;同时,随着Mn... 分析微量锰添加对镁合金显微组织和力学性能的影响。采用电子背散射技术、迹线分析、透射电镜和粘塑性自洽模拟等方法研究变形过程中的塑性变形机理。结果表明:Mn的加入使Mg−Mn合金的平均晶粒尺寸由28.30μm减小到5.10μm;同时,随着Mn含量的增加,样品的断裂伸长率由14.33%提高到20.33%,屈服强度则由84 MPa提高到180 MPa。这种同时提高塑性和强度的原因是基面滑移和非基面滑移之间的临界剪切应力差从173 MPa减小到115 MPa,导致非基面滑移活动明显增加。通过微合金元素调整滑移系统差异为开发具有高强度和延展性的镁合金提供了一种途径。 展开更多
关键词 镁合金 显微组织演变 力学性能 塑性 变形机理
下载PDF
Systemic modulation of skeletal mineralization by magnesium implant promoting fracture healing: Radiological exploration enhanced with PCA-based machine learning in a rat femoral model 被引量:1
2
作者 Yu Sun Heike Helmholz Regine Willumeit-Römer 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1009-1020,共12页
The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and susta... The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing. 展开更多
关键词 MAGNESIUM Implants Bone fracture MINERALIZATION Systemic modulation Principal component analysis.
下载PDF
Peri-implant gas accumulation in response to magnesium-based musculoskeletal biomaterials:Reframing current evidence for preclinical research and clinical evaluation 被引量:1
3
作者 Yu Sun Heike Helmholz Regine Willumeit-Römer 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期59-71,共13页
Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implan... Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders. 展开更多
关键词 Magnesium implant Degradation Hydrogen Gas release Postoperative follow-up
下载PDF
铁配合型镁合金缓蚀剂的阴极阻蚀机制
4
作者 杨俊杰 王霖倩 +4 位作者 Carsten BLAWERT Sviatlana VLAMAKA Christian FEILER Mikhail LZHELUDKEVICH 李卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第5期1496-1506,共11页
研究阴极缓蚀剂(3-甲基水杨酸盐,3-MeSA)对含铁纯镁腐蚀性能的影响。高铁杂质颗粒成分、腐蚀表面形貌以及3-MeSA分子结构特征为揭示含铁镁合金的腐蚀行为及3-MeSA的阴极型阻蚀机理提供了实验与理论依据。研究结果表明:含铁杂质颗粒中含... 研究阴极缓蚀剂(3-甲基水杨酸盐,3-MeSA)对含铁纯镁腐蚀性能的影响。高铁杂质颗粒成分、腐蚀表面形貌以及3-MeSA分子结构特征为揭示含铁镁合金的腐蚀行为及3-MeSA的阴极型阻蚀机理提供了实验与理论依据。研究结果表明:含铁杂质颗粒中含有固溶态硅,而Fe/Si比可能是导致不同局部腐蚀形态差异的主要原因。虽然3-MeSA能在镁基体上形成吸附层,但其阻蚀机制主要归因于其螯合从富铁颗粒中自腐蚀释放Fe^(2+)/Fe^(3+)的能力,阻止被还原的铁物质再次沉积至腐蚀金属表面。 展开更多
关键词 富铁杂质 铁配合剂 阴极型缓蚀剂 量子化学计算
下载PDF
Mg-Ti hybrid joints:Surface modification,corrosion studies and 3D-pore investigation using synchrotron-based microtomography
5
作者 M.Fazel V.M.Garamus +8 位作者 M.Serdechnova Fabian Wilde F.Wieland E.Nidadavolu T.Wu T.Ebel C.Blawert R.Willumeit-Römer M.L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3142-3158,共17页
A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong ga... A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong galvanic corrosion between Mg and Ti is a major issue to be considered.This work aims to explore plasma electrolytic oxidation(PEO)as a single-step coating treatment to allow for an acceptable degradation behavior of MgTi hybrid systems.To this end,MgTi hybrid joints were produced through the heat treatment of Mg-0.6Ca and commercially pure Ti specimens at 640°C for 8 h.A single-step PEO treatment was then employed to create a protective layer on the surface of hybrid couples.Even though the scanning electron microscopy(SEM)images showed only a porosity of 6%and 12%within the PEO layers on single Mg and MgTi couples,3D investigation of the synchrotron-based microtomography data demonstrated a porosity of 18%and 30%with a considerable number of interconnected pores.According to the electrochemical impedance spectroscopy measurements,the impedance modulus at all frequencies on coated MgTi coupled specimens was lower than that on the coated single Mg-0.6Ca and pure Ti.However,the application of PEO treatment significantly decreased the strong galvanic degradation of Mg-0.6Ca in contact with Ti.The results of hydrogen evolution tests revealed that PEO-treated MgTi couples showed a similar degradation behavior as the single alloy during the first day of immersion. 展开更多
关键词 Mg-Ti hybrid implants Plasma electrolytic oxidation Synchrotron microtomography Galvanic corrosion
下载PDF
LDH sealing for PEO coated friction stir welded AZ31/AA5754 materials
6
作者 Tatsiana Shulha Maria Serdechnova +4 位作者 Ting Wu Thymoty Naacke Gert Wiese Carsten Blawert Mikhail L.Zheludkevich 《Nano Materials Science》 EI CAS CSCD 2024年第4期428-442,共15页
The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previo... The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness. 展开更多
关键词 Layered double hydroxides(LDHs) Plasma electrolytic oxidation(PEO) Chelating agent Welded magnesium-aluminum materials Functional coatings
下载PDF
Effect of thermo-mechanical conditions during constrained friction processing on the particle refinement of AM50 Mg-alloy phases
7
作者 Camila Caroline de Castro AndréMartins Neves Benjamin Klusemann 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2298-2311,共14页
Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In t... Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In this study,the effect of CFP on the microstructural refinement of AM50 rods is investigated in terms of particle size and morphology of the eutectic and secondary phases originally present in the base material,in particular the eutecticβ-Mg_(17)Al_(12)and Al-Mn phases.For that purpose,as-cast and solution heat-treated base material and processed samples were analyzed.The Al_(8)Mn_(5) intermetallic phase was identified as the main secondary phase present in all samples before and after the processing.A notorious refinement of these particles was observed,starting from particles with an average equivalent length of a few micrometers to around 560 nm after the processing.The refinement of the secondary phase refinement is attributed to a mechanism analogous to the attrition comminution,where the combination of temperature increase and shearing of the material enables the continuous breaking of the brittle intermetallic particles into smaller pieces.As for the eutectic phase,the results indicate the presence of the partially divorcedβ-Mg_(17)Al_(12)particles exclusively in the as-cast base material,indicating that no further phase transformations regarding the eutectic phase,such as dynamic precipitation,occurred after the CFP.In the case of the processed as-cast material analyzed after the CFP,the thermal energy generated during the processing led to temperature values above the solvus limit of the eutectic phase,which associated with the mechanical breakage of the particles,enabled the complete dissolution of this phase.Therefore,CFP was successfully demonstrated to promote an extensive microstructure refinement in multiple aspects,in terms of grain sizes of theα-Mg phase and presence and morphology of the Al-Mn and eutecticβ-Mg_(17)Al_(12). 展开更多
关键词 Constrained friction processing AM50 Refill friction stir spot welding Extrusion β-Mg_(17)Al_(12) Al-Mn phases
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
8
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes Corrosion resistance AM50 magnesium alloy
下载PDF
Improving the ductility and toughness of nano-TiC/AZ61 composite by optimizing bimodal grain microstructure via extrusion speed
9
作者 Lingling Fan Mingyang Zhou +5 位作者 Wulve Lao Yuwenxi Zhang Hajo Dieringa Ying Zeng Yuanding Huang Gaofeng Quan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3264-3280,共17页
In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical p... In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite. 展开更多
关键词 Nano-TiC/AZ61 composite Extrusion speed Heterogeneous bimodal grain structure Increasing ductility mechanism Toughening mechanism
下载PDF
A combined computational/experimental study of anode-concerned voltage drop in aqueous primary Mg-air batteries
10
作者 Wen Xu Min Deng +5 位作者 Darya Snihirova Linqian Wang Yulong Wu Sviatlana V.Lamaka Mikhail L.Zheludkevich Daniel Hoche 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1854-1866,共13页
The voltage drop appearing at Mg anode-electrolyte interface is a critical issue for the battery power and energy density of aqueous primary Mg-air batteries.The respective voltage loss is typically assigned to the de... The voltage drop appearing at Mg anode-electrolyte interface is a critical issue for the battery power and energy density of aqueous primary Mg-air batteries.The respective voltage loss is typically assigned to the deposits layer forming on the anode surface during discharge.In this work,we experimentally and computationally investigate the critical factors affecting the voltage drop at Mg anode towards a deeper understanding of the contribution of deposit and its growth.A two-dimensional(2D)mathematical model is proposed to compute the voltage drop of Mg-0.15Ca wt.%alloy(Mg-0.15Ca)by means of a semi-empirical formulas and experiments-based modification model,considering the effect of discharge current density,the negative difference effect(NDE)and surface deposits layer itself.This model is utilized to simulate the discharge potential of the anode at predefined experimental current densities.The computed voltage drop(half-cell voltage)is in good agreement with the experimental value.The applicability of the mathematical model is successfully validated on the second material(namely high-purity Mg). 展开更多
关键词 Aqueous Mg-air battery Voltage drop NDE Charge transfer Deposits-related resistances
下载PDF
Crystal plasticity finite element simulations on extruded Mg-10Gd rod with texture gradient
11
作者 Jaeseong Lee Dirk Steglich Youngung Jeong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3409-3430,共22页
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio... The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin. 展开更多
关键词 Crystal plasticity TEXTURE Finite element C-ring Three-point bending
下载PDF
Application of novel constrained friction processing method to produce fine grained biomedical Mg-Zn-Ca alloy
12
作者 Ting Chen Banglong Fu +7 位作者 Junjun Shen Uceu F.H.R.Suhuddin Björn Wiese Yuanding Huang Min Wang Jorge F.dos Santos Jean Pierre Bergmann Benjamin Klusemann 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期516-529,共14页
In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-... In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth. 展开更多
关键词 Constrained friction processing Magnesium alloys Microstructure Mechanical properties Grain refinement Plastic deformation
下载PDF
The effect of Laves phases and nano-precipitates on the electrochemical corrosion resistance of Mg-Al-Ca alloys under alkaline conditions
13
作者 Markus Felten Veronika Chaineux +12 位作者 Siyuan Zhang Ali Tehranchi Tilmann Hickel Christina Scheu Joshua Spille Marta Lipińska-Chwałek Joachim Mayer Benjamin Berkels Marcus Hans Imke Greving Silja Flenner Sandra Sefa Daniela Zander 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2447-2461,共15页
The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent r... The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent research focused on the active state of Mg dissolution,leading to unresolved effects of secondary phases adjacent to a stableα-solid solution passive layer.The present study investigates the fundamental electrochemical corrosion mechanisms of three different Laves phases with varying phase morphologies and phase fractions in the passive state of Mg-Al-Ca alloys.The microstructure was characterized by(transmission-)electron microscopy and synchrotron-based transmission X-ray microscopy.The electrochemical corrosion resistance was determined with a standard three-electrode setup and advanced in-situ flow cell measurements.A new electrochemical activity sequence(C15>C36>α-Mg>C14)was obtained,as a result of a stable passive layer formation on theα-solid solution.Furthermore,nm-scale Mg-rich precipitates were identified within the Laves phases,which tend to inhibit the corrosion kinetics. 展开更多
关键词 Laves phase STEM MAGNESIUM Corrosion Passive layer
下载PDF
Mg-based materials for hydrogen storage 被引量:15
14
作者 Yuanyuan Shang Claudio Pistidda +2 位作者 Gökhan Gizer Thomas Klassen Martin Dornheim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1837-1860,共24页
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w... Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity. 展开更多
关键词 Hydrogen storage materials Magnesium-based hydrides Metal hydrides NANOSTRUCTURES Catalysts Hydrogenation and dehydrogenation Kinetics THERMODYNAMICS Activation energy
下载PDF
Improving the Young’s modulus of Mg via alloying and compositing–A short review 被引量:8
15
作者 Hailong Shi Chao Xu +3 位作者 Xiaoshi Hu Weimin Gan Kun Wu Xiaojun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2009-2024,共16页
Lightweight,high-modulus structural materials are highly desired in many applications like aerospace,automobile and biomedical instruments.As the lightest metallic structural material,magnesium(Mg)has great potential ... Lightweight,high-modulus structural materials are highly desired in many applications like aerospace,automobile and biomedical instruments.As the lightest metallic structural material,magnesium(Mg)has great potential but is limited by its low intrinsic Young’s modulus.This paper reviews the investigations on high-modulus Mg-based materials during the last decades.The nature of elastic modulus is introduced,and typical high-modulus Mg alloys and Mg matrix composites are reviewed.Specifically,Mg alloys enhance Young’s modulus of pure Mg mainly by introducing suitable alloying elements to promote the precipitation of high-modulus second phases in the alloy system.Differently,Mg matrix composites improve Young’s modulus by incorporating high-modulus particles,whiskers and fibers into the Mg matrix.The modulus strengthening effectiveness brought by the two approaches is compared,and Mg matrix composites stand out as a more promising solution.In addition,two well-accepted modulus prediction models(Halpin-Tsai and Rule of mixtures(ROM))for different Mg matrix composites are reviewed.The effects of reinforcement type,size,volume fraction and interfacial bonding condition on the modulus of Mg matrix composites are discussed.Finally,the existing challenges and development trends of high-modulus Mg-based materials are proposed and prospected. 展开更多
关键词 Elastic modulus Mg alloy Mg matrix composite Modulus prediction model Mechanical properties
下载PDF
Exploring the contribution of oxygen reduction reaction to Mg corrosion by modeling assisted local analysis 被引量:3
16
作者 Cheng Wang Wen Xu +2 位作者 Daniel Höche Mikhail L.Zheludkevich Sviatlana V.Lamaka 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期100-109,共10页
Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process ... Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction. 展开更多
关键词 Local oxygen concentration Oxygen reduction reaction Mg corrosion NaCl electrolyte Hydrogen evolution reaction Numerical model
下载PDF
Hot deformation behavior of novel high-strength Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy 被引量:3
17
作者 Hao Chen Yanmei Yang +7 位作者 Conglin Hu Gang Zhou Hui Shi Genzhi Jiang Yuanding Huang Norbert Hort Weidong Xie Guobing Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2397-2410,共14页
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat... The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships. 展开更多
关键词 high-strength Mg alloy conventional extrusion fine grains hot deformation behavior constitutive relationship microstructural evolution
下载PDF
High temperature tensile,compression and creep behavior of recycled short carbon fibre reinforced AZ91 magnesium alloy fabricated by a high shearing dispersion technique 被引量:2
18
作者 Sinan Kandemir Sarkis Gavras Hajo Dieringa 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1773-1787,共15页
The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high tem... The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high temperature mechanical and creep properties of AZ91 alloy and its composites with various recycled carbon fibre contents(2.5 and 5 wt.%)and lengths(100 and 500μm)were investigated in the temperature range of 25-200℃.The microstructural characterization showed that the high shear dispersion technique provided the cast composites with finer grains and relatively homogenous distribution of fibres.The materials tested displayed different behaviour depending on the type of loading.In general,while enhancements in the mechanical properties of composites is attributed to the load bearing and grain refinement effects of fibres,the fluctuations in the properties were discussed on the basis of porosity formation,relatively high reinforcement content leading to fibre clustering and interlayer found between the matrix and reinforcement compared to those of AZ91 alloy.The compressive creep tests revealed similar or higher minimum creep rates in the recycled carbon fibre reinforced AZ91 in comparison to the unreinforced AZ91. 展开更多
关键词 Metal matrix composites Magnesium alloys Recycled carbon fibre High-shear dispersion Microstructure Mechanical properties CREEP
下载PDF
Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage 被引量:3
19
作者 M.Passing C.Pistidda +4 位作者 G.Capurso J.Jepsen O.Metz M.Dornheim T.Klassen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2761-2774,共14页
With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg was... With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage.Owing to the high reaction enthalpy,the moderate pressure and appropriate temperature conditions,the broad abundance and the recyclability,the Mg/Al alloy is perfectly suitable for this purpose.As further development of a previous work,in which the performance of recycled Mg/Al waste was presented,a kinetic model for hydro-and dehydrogenation is derived in this study.Temperature and pressure dependencies are determined,as well as the rate limiting step of the reaction.First experiments are carried out in an autoclave with a scaled-up powder mass,which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions. 展开更多
关键词 Thermo-chemical energy storage Hydrogen storage Metal hydride Magnesium based waste Recycling
下载PDF
PEO processing of AZ91Nd/Al_(2)O_(3) MMC-the role of alumina fibers 被引量:2
20
作者 Ting Wu Carsten Blawert +4 位作者 Maria Serdechnova Polina Karlova Gleb Dovzhenko D.C.Florian Wieland Mikhail L Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期459-476,共18页
This work reports the influence of alumina fiber reinforcement of an AZ91Nd MMC(metal matrix composite)on the PEO coating formation process in a sodium phosphate-based electrolyte.By comparison with the pure AZ91Nd,th... This work reports the influence of alumina fiber reinforcement of an AZ91Nd MMC(metal matrix composite)on the PEO coating formation process in a sodium phosphate-based electrolyte.By comparison with the pure AZ91Nd,the evolution of alumina fiber during the processing and the characteristics of the resultant PEO coating were investigated.The voltage response as a function of processing time was changed.Lower voltage in the presence of alumina fiber is responsible for the lower coating thickness.The morphology and phase composition of the coatings are also influenced by the incorporation of the fiber.Firstly,the fiber is embedded in the coating and interrupts the continuity of the coating.With increasing processing time,the fiber is found to be reactively incorporated in the coating.The intention to produce a MgAl_(2)O_(4)containing coating is achieved and it is mainly accumulated near the coating surface.However,due to the low number of fibers,the Al content is overall still low and only near to the fibers the MgAl_(2)O_(4)spinel phase can form. 展开更多
关键词 Plasma electrolytic oxidation Mg alloy Metal matrix composite AL2O3 MgAl_(2)O_(4)
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部