The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic s...The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.展开更多
The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution r...The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2).展开更多
Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would indu...Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would induce bulk structure degradation and interfacial environment deterioration,and the absence of Co element reduces the lithium diffusion kinetics,severely limiting the performance liberation of this kind of cathodes.Herein,a multifunctional Ti/Zr dual cation co-doping strategy has been employed to improve the lithium storage performance of LiNi_(0.9)Mn_(0.1)O_(2)(NM91)cathode.On the one hand,the Ti/Zr co-doping weakens the Li^(+)/Ni^(2+)mixing through magnetic interactions due to the inexistence of unpaired electrons for Ti^(4+)and Zr^(4+),increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases.On the other hand,they enhance the lattice oxygen stability because of the strong Ti-O and Zr-O bonds,inhibiting the undesired H3 phase transition and lattice oxygen loss,improving the bulk structure and cathode-electrolyte interface stability.As a result,the Ti/Zr co-doped NM91(NMTZ)exhibits a 91.2%capacity retention rate after 100 cycles,while that of NM91 is only82.9%.Also,the NMTZ displays better rate performance than NM91 with output capacities of 115 and93 mA h g^(-1)at a high current density of 5 C,respectively.Moreover,the designed NMTZ could enable the full battery to deliver an energy density up to 263 W h kg^(-1),making the ultra-high nickel cobaltfree lithium layered oxide cathode closer to practical applications.展开更多
Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the re...Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the realized energy density is constrained by the limited capacity and low voltage.Herein,copper-tetracyanoquinodimethane(CuTCNQ),an organic charge-transfer complex is evaluated as a zinc-ion battery cathode owing to the good electron acceptation ability in the cyano groups that improves the voltage output.Through electrochemical activation,electrolyte optimization,and adoption of graphene-based separator,CuTCNQ-based aqueous zinc-ion batteries deliver much improved rate performance and cycling stability with anti-self-discharge properties.The structural evolution of CuTCNQ during discharge/charge are investigated by ex situ Fourier transform infra-red(FT-IR)spectra,ex situ X-ray photoelectron spectroscopy(XPS),and in situ ultraviolet visible spectroscopy(UV-vis),revealing reversible redox reactions in both cuprous cations(Cu^(+))and organic anions(TCNQ^(x-1)),thus delivering a high voltage output of 1.0 V and excellent discharge capacity of 158 mAh g^(-1).The remarkable electrochemical performance in Zn//CuTCNQ is ascribed to the strong inductive effect of cyano groups in CuTCNQ that elevated the voltage output and the graphene-modified separator that inhibited CuTCNQ dissolution and shuttle effect in aqueous electrolytes.展开更多
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta...Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite.展开更多
Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders th...Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.展开更多
In light of the increasing demand for environmental protection and energy conservation,the recovery of highly valuable metals,such as Li,Co,and Ni,from spent lithium-ion batteries(LIBs)has attracted widespread attenti...In light of the increasing demand for environmental protection and energy conservation,the recovery of highly valuable metals,such as Li,Co,and Ni,from spent lithium-ion batteries(LIBs)has attracted widespread attention.Most conventional recycling strategies,however,suffer from a lack of lithium recycling,although they display high efficiency in the recovery of Co and Ni.In this work,we report an efficient extraction process of lithium from the spent LIBs by using a functional imidazolium ionic liquid.The extraction efficiency can be reached to 92.5%after a three-stage extraction,while the extraction efficiency of Ni-Co-Mn is less than 4.0%.The new process shows a high selectivity of lithium ion.FTIR spectroscopy and ultraviolet are utilized to characterize the variations in the functional groups during extraction to reveal that the possible extraction mechanism is cation exchange.The results of this work provide an effective and sustainable strategy of lithium recycling from spent LIBs.展开更多
Organic solar cells(OSCs)have received great attention for the prominent advantage of low-cost,light-weight and potential for fabricating flexible and semi-transparent device via roll-to-roll printing toward making be...Organic solar cells(OSCs)have received great attention for the prominent advantage of low-cost,light-weight and potential for fabricating flexible and semi-transparent device via roll-to-roll printing toward making better use of inexhaustible renewable clean energy during the past years[1-4].展开更多
Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSC...Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSCs have increased steadily in recent years,and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step.This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency,stability,perovskite-based tandem devices,and lead-free PSCs.Moreover,a brief discussion on the development of PSC modules and its challenges toward practical application is provided.展开更多
Isoindigo(IID)has been widely used as strong acceptor unit(A)to construct narrow bandgap polymers in organic field effect transistors(OFETs)and organic solar cells(OSCs).Combing with IID,we chose benzodithiophene(BDT)...Isoindigo(IID)has been widely used as strong acceptor unit(A)to construct narrow bandgap polymers in organic field effect transistors(OFETs)and organic solar cells(OSCs).Combing with IID,we chose benzodithiophene(BDT)as the donor unit(D)and thieno[3,2-b]thiophene(TT)as theπbridge to construct a new type of D-π-A polymer PE70.Based on PE70,we adopt the chlorination strategy to fine-tune photoelectric characteristics and film morphology,and then developed PE74 and PE75.By blending with non-fullerene acceptor(NFA)Y6,device based on PE74 with chloride substitution on the BDT unit showed increasing photovoltaic performance.In addition,further chlorine substitution on the IID(PE75)would greatly reduce the non-radiative voltage loss(ΔV3),and the distorted molecular conformation also took responsible for the excessive recombination.As results,PE74:Y6-based device achieves a power conversion efficiency(PCE)of 11.06%with open-circuit voltage(VOC)of 0.76 V,which are higher than those of PE70:Y6(PCE of 10.40%and VOC of 0.72 V)and PE75:Y6-based device(PCE of 6.24%and VOC of 0.84 V).This work demonstrates the regularity of the photovoltaic performance caused by chlorination strategy in polymer in the non-fullerene OSC devices,which provide important insights into highperformance photovoltaic materials.展开更多
Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist...Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist of perylene core in PDI dimer will destroy the effective conjugation.Thus,ring annulation of PDI dimer is a feasible method to balance the film quality and electron transport,but the systematic study has attracted few attentions.Herein,we choose a simple vinylene linked PDI dimer,V-PDI2,and then conduct further studies on the structure-property-performance relationship of four kinds of derived fused-PDI dimers,namely V-TDI2,V-FDI2,V-PDIS2 and V-PDISe2 respectively.The former two are incorporated thianaphthene and benzofuran at the inside bay positions,and the latter two are fused thiophene and selenophene at the outside bay positions,respectively.Theoretical calculations reveal the inside-and outside-fused structures largely affect the skeleton configuration,the former two tend to be planar structure and the latter two maintain the distorted backbone.The photovoltaic characterizations show that the inside-fused PDI dimers offer high open circuit voltage(VOC),while the outside-fused PDI dimers afford large short-circuit current density(JSC).This variation tendency results from the reasonably tunable energy levels,light absorption,molecular crystallinity and film morphology.As a result,PBDB-T:V-PDISe2 device exhibits the highest power conversion efficiency(PCE)of 6.51%,and PBDB-T:VFDI2 device realizes the highest VOC of 1.00 V.This contribution indicates that annulation of PDI dimers in outside or inside bay regions is a feasible method to modulate the properties of PDI-based non-fullerene acceptors.展开更多
Non-stoichiometric copper selenide(Cu_(2-x)Se,x=0.18~0.25)nanomaterials have attracted extensive attentions due to their excellent thermoelectric,optoelectronic and photocatalytic performances.However,efficient produc...Non-stoichiometric copper selenide(Cu_(2-x)Se,x=0.18~0.25)nanomaterials have attracted extensive attentions due to their excellent thermoelectric,optoelectronic and photocatalytic performances.However,efficient production of Cu_(2-x)Se nanoparticles(NPs)through a green and convenient way is still hindered by the inevitable non-environmentally friendly operations in common chemical synthesis.Herein,we initially reveal the coexistence of seleninic acid content and elemental selenium(Se)NPs in pulsed laser-generated Se colloidal solution.Consequently,we put forward firstly a closedcycle reaction mode for totally green production of Cu_(1.8)Se NPs to exclude traditional requirements of high temperature and toxic precursors by using Se colloidal solution.In such closed-cycle reaction,seleninic acid works as the initiator to oxidize copper sheet to release cuprous ions which can catalyze the disproportion of Se NPs to form Se O_(3)^(2-)and Se^(2-)ions and further produce Cu_(2-x)Se NPs,and the by-product SeO_(3)^(2-)ions promote subsequent formation of cuprous from the excessive Cu sheet.In experiments,the adequate copper(Cu)sheet was simply dipped into such Se colloidal solution at 70℃,and then the stream of Cu_(1.8)SeNPs could be produced until the exhaustion of selenium source.The conversion rate of Se element reaches to more than 75%when the size of Se NPs in weakly acidic colloidal solution is limited between 1 nm and 50 nm.The laser irradiation duration shows negative correlation with the size of Se NPs and unobvious impact to the p H of the solution which both are essential to the high yield of Cu_(1.8)SeNPs.Before Cu sheet is exhausted,Se colloidal solution can be successively added without influences to the product quality and the Se conversion rate.Such green methodology positively showcases a brand-new and potential strategy for mass production of Cu_(2-x)Se nanomaterials.展开更多
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement...Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization.Despite achieving remarkable po...Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization.Despite achieving remarkable power conversion efficiency of up to 26.1%,a substantial discrepancy persists when compared to the theoretical Shockley-Queisser(SQ)limit.One of the most serious challenges facing perovskite solar cells is the energy loss incurred during photovoltaic conversion,which affects the SQ limits and stability of the device.More significant than the energy loss occurring in the bulk phase of the perovskite is the energy loss occurring at the surface-interface.Here,we provide a systematic overview of the physical and chemical properties of the surface-interface.Firstly,we delve into the underlying mechanism causing the energy deficit and structural degradation at the surface-interface,aiming to enhance the understanding of carrier transport processes and structural chemical reactivity.Furthermore,we systematically summarized the primary modulating pathways,including surface reconstruction,dimensional construction,and electric-field regulation.Finally,we propose directions for future research to advance the efficiency of perovskite solar cells towards the radiative limit and their widespread commercial application.展开更多
Synthetic lethality is a novel model for cancer therapy.To understand the function and mechanism of BEN domain-containing protein 4(BEND4)in pancreatic cancer,eight cell lines and a total of 492 cases of pancreatic ne...Synthetic lethality is a novel model for cancer therapy.To understand the function and mechanism of BEN domain-containing protein 4(BEND4)in pancreatic cancer,eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study.Methylation-specific polymerase chain reaction,CRISPR/Cas9,immunoprecipitation assay,comet assay,and xenograft mouse model were used.BEND4 is a new member of the BEN domain family.The expression of BEND4 is regulated by promoter region methylation.It is methylated in 58.1%(176/303)of pancreatic ductal adenocarcinoma(PDAC),33.3%(14/42)of intraductal papillary mucinous neoplasm,31.0%(13/42)of pancreatic neuroendocrine tumor,14.3%(3/21)of mucinous cystic neoplasm,4.3%(2/47)of solid pseudopapillary neoplasm,and 2.7%(1/37)of serous cystic neoplasm.BEND4 methylation is significantly associated with late-onset PDAC(>50 years,P<0.01)and tumor differentiation(P<0.0001),and methylation of BEND4 is an independent poor prognostic marker(P<0.01)in PDAC.Furthermore,BEND4 plays tumor-suppressive roles in vitro and in vivo.Mechanistically,BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair.Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor.Collectively,the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.展开更多
MXene is a promising electrode material for both high volumetric capacitance and high-rate performance in supercapacitors.However,the current study has mainly focused on the monometallic element Ti_(3)C_(2)T_(x) MXene...MXene is a promising electrode material for both high volumetric capacitance and high-rate performance in supercapacitors.However,the current study has mainly focused on the monometallic element Ti_(3)C_(2)T_(x) MXene until now,while the bimetallic and multimetallic MXene have received comparatively less attention.In this work,we demonstrate that the electronic structure of the Mo_(2)TiC_(2)T_(x) MXene could be regulated by fine-tuning the content of doped Nb atoms.The enhanced electron cloud density of surface–O termination and the electron spin of the Mo atoms in the Mo_(2)TiC_(2)T_(x) MXene,leads to the boost of electric double-layer capacitor(EDLC)and improvement of pseudocapacitance.As a consequence,the electrochemical performance of Nb-doped Mo_(2)TiC_(2)T_(x) MXene(Nb-0.3-MXene)demonstrates a capacitance of 398 F·cm^(−3),roughly doubling that of the pristine Mo_(2)TiC_(2)T_(x) MXene electrode at 197 F·cm^(−3) in the 3 M H_(2)SO_(4) electrolyte.At the same time,the Nb-0.3-MXene could even maintain a capacitance of 82.75% at 200 mV·s−1,with high cyclic stability for 19,000 cycles at 10 A·g−1.Additionally,Nb-0.3-MXene-based hybrid supercapacitors deliver a remarkable volumetric energy density of 48.1 W·h·L^(−1)at 230.7 W·L^(−1),and 34.4 W·h·L^(−1)at a high power density of 82.6 kW·L^(−1).There exists a balance between the volumetric capacitance and rate performance with different ratios of Nb atoms in the Nb-doped MXene due to the strong interaction between the Nb-doped MXene and the intercalated protons.Therefore,optimizing the electronic structure of MXene through heteroatom doping is of great potential for enhanced supercapacitor performance.展开更多
Developing industrially moldable catalysts with harmonized redox performance and acidity is of great significance for the efficient disposal of chlorinated volatile organic compounds(CVOCs)in actual exhaust gasses.Her...Developing industrially moldable catalysts with harmonized redox performance and acidity is of great significance for the efficient disposal of chlorinated volatile organic compounds(CVOCs)in actual exhaust gasses.Here,commercial TiO_(2),typically used for molding catalysts,was chosen as the carrier to fabricate a series of Ce_(0.02)Mn_(0-0.24)TiO_(x) materials with different Mn doping ratios and employed for chlorobenzene(CB)destruction.The introduction of Mn remarkedly facilitated the synergistic effect of each element via the electron transfer processes:Ce^(3+)+Mn^(4+/3+)■Ce^(4+)+Mn^(3+/2+)and Mn^(4+/3+)+Ti^(4+)■Mn^(3+/2+)+Ti^(3+).These synergistic interactions in Ce_(0.02)Mn_(0.04-0.24)TiO_(x),especially Ce_(0.02)Mn_(0.16)TiO_(x),significantly elevated the active oxygen species,oxygen vacancies and redox properties,endowing the superior catalytic oxidation of CB.When the Mn doping amount increased to 0.24,a separate Mn_(3)O_(4) phase appeared,which in turn might weaken the synergistic effect.Furthermore,the acidity of Ce_(0.02)Mn_(0.04-0.24)TiO_(x) was decreased with the Mn doping,regulating the balance of redox property and acidity.Notably,Ce_(0.02)Mn_(0.16)TiO_(x) featured relatively abundant B-acid sites.Its coordinating redox ability and moderate acidity promoted the deep oxidation of CB and RCOOH-intermediates,as well as the rapid desorption of Cl species,thus obtaining sustainable reactivity.In comparison,CeTiO_(x) owned the strongest acidity,however,its poor redox property was not sufficient for the timely oxidative decomposition of the easier adsorbed CB,resulting in its rapid deactivation.This finding provides a promising strategy for the construction of efficient commercial molding catalysts to decompose the industrial-scale CVOCs.展开更多
Hypertension significantly increases the risk of cardiovascular diseases and seriously affects people’s health.The incidence of hypertension is rising rapidly in the world and hypertension has become a significant fa...Hypertension significantly increases the risk of cardiovascular diseases and seriously affects people’s health.The incidence of hypertension is rising rapidly in the world and hypertension has become a significant factor influencing the global average life expectancy.The diagnosis of hypertension is generally fulfilled by measuring diastolic and systolic blood pressure,but it is insufficient to differentiate essential hypertension from secondary hypertension,so it is crucial to identifying the cause of hypertension by detecting biomarkers in plasma.In clinical practice,five plasma biomarkers are utilized for diagnosing hypertension,and the detection tasks of a large number of cases have raised increasing demands for cost-effective,efficient,speedy,and diverse methods,which makes many traditional diagnostic technologies inadequate for meeting the needs of clinical diagnosis.The nanomaterial-based detection techniques have frequently attained the qualities of quick reaction,low cost,straightforward operation,high sensitivity,and strong specificity in recent years with the advancement of nanotechnology,so they have great potential for early and rapid diagnosis.In this review,we will introduce the characteristics and drawbacks of current clinical detection methods for hypertension screening,the principles and advancements of nanotechnology-based detection methods,as well as their potentials for clinical application.展开更多
Perovskite solar cells(PSCs)have seen remarkable progress in recent years,largely attributed to various additives that enhance both efficiency and stability.Among these,fluorine-containing additives have garnered sign...Perovskite solar cells(PSCs)have seen remarkable progress in recent years,largely attributed to various additives that enhance both efficiency and stability.Among these,fluorine-containing additives have garnered significant interest because of their unique hydrophobic properties,effective defect passivation,and regulation capability on the crystallization process.However,a targeted structural approach to design such additives is necessary to further enhance the performance of PSCs.Here,fluoroalkyl ethylene with different fluoroalkyl chain lengths(CH_(2)CH(CF_(2))nCF_(3),n=3,5,and 7)as liquid additives is used to investigate influences of fluoroalkyl chain lengths on crystallization regulation and defect passivation.The findings indicate that optimizing the quantity of F groups plays a crucial role in regulating the electron cloud distribution within the additive molecules.This optimization fosters strong hydrogen bonds and coordination effects with FA+and uncoordinated Pb^(2+),ultimately enhancing crystal quality and device performance.Notably,1H,1H,2H-perfluoro-1-hexene(PF_(3))with the optimal number of F presents the most effective modulation effect.A PSC utilizing PF_(3)achieves an efficiency of 24.05%,and exhibits exceptional stability against humidity and thermal fluctuations.This work sheds light on the importance of tailored structure designs in additives for achieving high-performance PSCs.展开更多
文摘The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.
基金This work was financially supported by the National Natural Science Foundation of China (52122308,21905253,51973200)the Natural Science Foundation of Henan (202300410372).
文摘The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2).
基金funded by the Key R&D Program of Jilin Province(20220201132GX)the Key R&D Program of Hubei Province(2022BAA084)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(RERU2023008)。
文摘Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would induce bulk structure degradation and interfacial environment deterioration,and the absence of Co element reduces the lithium diffusion kinetics,severely limiting the performance liberation of this kind of cathodes.Herein,a multifunctional Ti/Zr dual cation co-doping strategy has been employed to improve the lithium storage performance of LiNi_(0.9)Mn_(0.1)O_(2)(NM91)cathode.On the one hand,the Ti/Zr co-doping weakens the Li^(+)/Ni^(2+)mixing through magnetic interactions due to the inexistence of unpaired electrons for Ti^(4+)and Zr^(4+),increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases.On the other hand,they enhance the lattice oxygen stability because of the strong Ti-O and Zr-O bonds,inhibiting the undesired H3 phase transition and lattice oxygen loss,improving the bulk structure and cathode-electrolyte interface stability.As a result,the Ti/Zr co-doped NM91(NMTZ)exhibits a 91.2%capacity retention rate after 100 cycles,while that of NM91 is only82.9%.Also,the NMTZ displays better rate performance than NM91 with output capacities of 115 and93 mA h g^(-1)at a high current density of 5 C,respectively.Moreover,the designed NMTZ could enable the full battery to deliver an energy density up to 263 W h kg^(-1),making the ultra-high nickel cobaltfree lithium layered oxide cathode closer to practical applications.
基金financially supported by the National Natural Science Foundation of China(Nos.52102117,51173170,and 21773216)the joint project from the Henan-Provincial and the China-National Natural Science Foundations(No.U2004208)Key Science and Technology Program of Henan Province(No.202102310212)
文摘Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost,environmental friendliness,multiple-electron-transfer reactions,and resource sustainability.However,the realized energy density is constrained by the limited capacity and low voltage.Herein,copper-tetracyanoquinodimethane(CuTCNQ),an organic charge-transfer complex is evaluated as a zinc-ion battery cathode owing to the good electron acceptation ability in the cyano groups that improves the voltage output.Through electrochemical activation,electrolyte optimization,and adoption of graphene-based separator,CuTCNQ-based aqueous zinc-ion batteries deliver much improved rate performance and cycling stability with anti-self-discharge properties.The structural evolution of CuTCNQ during discharge/charge are investigated by ex situ Fourier transform infra-red(FT-IR)spectra,ex situ X-ray photoelectron spectroscopy(XPS),and in situ ultraviolet visible spectroscopy(UV-vis),revealing reversible redox reactions in both cuprous cations(Cu^(+))and organic anions(TCNQ^(x-1)),thus delivering a high voltage output of 1.0 V and excellent discharge capacity of 158 mAh g^(-1).The remarkable electrochemical performance in Zn//CuTCNQ is ascribed to the strong inductive effect of cyano groups in CuTCNQ that elevated the voltage output and the graphene-modified separator that inhibited CuTCNQ dissolution and shuttle effect in aqueous electrolytes.
基金financially supported by National Natural Science Foundation of China(52374288,52204298)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)+2 种基金National Key Research and Development Program of China(2022YFC3900805-4/7)Hunan Provincial Education Office Foundation of China(No.21B0147)Collaborative Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources,Found of State Key Laboratory of Mineral Processing(BGRIMM-KJSKL-2017-13)。
文摘Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite.
基金the financial support of the National Natural Science Foundation of China(Nos.U21A20171,12074245,and 52102281)National Key R&D Program of China(Nos.2021YFB3800068 and 2020YFB1506400)+1 种基金Shanghai Sailing Program(No.21YF1421600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2021QNRC001).
文摘Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.
基金supported by the Science Fund for Major Program of National Natural Science Foundation of China(21890762)Innovation Academy for Green Manufacture,Chinese Academy of Sciences(IAGM-2020-C28).
文摘In light of the increasing demand for environmental protection and energy conservation,the recovery of highly valuable metals,such as Li,Co,and Ni,from spent lithium-ion batteries(LIBs)has attracted widespread attention.Most conventional recycling strategies,however,suffer from a lack of lithium recycling,although they display high efficiency in the recovery of Co and Ni.In this work,we report an efficient extraction process of lithium from the spent LIBs by using a functional imidazolium ionic liquid.The extraction efficiency can be reached to 92.5%after a three-stage extraction,while the extraction efficiency of Ni-Co-Mn is less than 4.0%.The new process shows a high selectivity of lithium ion.FTIR spectroscopy and ultraviolet are utilized to characterize the variations in the functional groups during extraction to reveal that the possible extraction mechanism is cation exchange.The results of this work provide an effective and sustainable strategy of lithium recycling from spent LIBs.
基金The authors thank the support from the National Key Research and Development Program of China(2017YFA0206600)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH033)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000)the National Natural Science Foundation of China(NSFC,Nos.21875052,51873044,52073067).
文摘Organic solar cells(OSCs)have received great attention for the prominent advantage of low-cost,light-weight and potential for fabricating flexible and semi-transparent device via roll-to-roll printing toward making better use of inexhaustible renewable clean energy during the past years[1-4].
基金supported by the National Natural Science Foundation of China(Grant Nos.11834011 and 12074245)the support from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University。
文摘Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSCs have increased steadily in recent years,and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step.This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency,stability,perovskite-based tandem devices,and lead-free PSCs.Moreover,a brief discussion on the development of PSC modules and its challenges toward practical application is provided.
基金the National Key Research and Development Program of China(2017YFA0206600)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH033)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000)the National Natural Science Foundation of China(NSFC,Nos.21875052,51873044,52073067).
文摘Isoindigo(IID)has been widely used as strong acceptor unit(A)to construct narrow bandgap polymers in organic field effect transistors(OFETs)and organic solar cells(OSCs).Combing with IID,we chose benzodithiophene(BDT)as the donor unit(D)and thieno[3,2-b]thiophene(TT)as theπbridge to construct a new type of D-π-A polymer PE70.Based on PE70,we adopt the chlorination strategy to fine-tune photoelectric characteristics and film morphology,and then developed PE74 and PE75.By blending with non-fullerene acceptor(NFA)Y6,device based on PE74 with chloride substitution on the BDT unit showed increasing photovoltaic performance.In addition,further chlorine substitution on the IID(PE75)would greatly reduce the non-radiative voltage loss(ΔV3),and the distorted molecular conformation also took responsible for the excessive recombination.As results,PE74:Y6-based device achieves a power conversion efficiency(PCE)of 11.06%with open-circuit voltage(VOC)of 0.76 V,which are higher than those of PE70:Y6(PCE of 10.40%and VOC of 0.72 V)and PE75:Y6-based device(PCE of 6.24%and VOC of 0.84 V).This work demonstrates the regularity of the photovoltaic performance caused by chlorination strategy in polymer in the non-fullerene OSC devices,which provide important insights into highperformance photovoltaic materials.
基金supported by the National Key Research and Development Program of China (2017YFA0206600)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH033)the National Natural Science Foundation of China (NSFC, Nos. 51473040, 51673048, 21875052, 51673092)
文摘Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist of perylene core in PDI dimer will destroy the effective conjugation.Thus,ring annulation of PDI dimer is a feasible method to balance the film quality and electron transport,but the systematic study has attracted few attentions.Herein,we choose a simple vinylene linked PDI dimer,V-PDI2,and then conduct further studies on the structure-property-performance relationship of four kinds of derived fused-PDI dimers,namely V-TDI2,V-FDI2,V-PDIS2 and V-PDISe2 respectively.The former two are incorporated thianaphthene and benzofuran at the inside bay positions,and the latter two are fused thiophene and selenophene at the outside bay positions,respectively.Theoretical calculations reveal the inside-and outside-fused structures largely affect the skeleton configuration,the former two tend to be planar structure and the latter two maintain the distorted backbone.The photovoltaic characterizations show that the inside-fused PDI dimers offer high open circuit voltage(VOC),while the outside-fused PDI dimers afford large short-circuit current density(JSC).This variation tendency results from the reasonably tunable energy levels,light absorption,molecular crystallinity and film morphology.As a result,PBDB-T:V-PDISe2 device exhibits the highest power conversion efficiency(PCE)of 6.51%,and PBDB-T:VFDI2 device realizes the highest VOC of 1.00 V.This contribution indicates that annulation of PDI dimers in outside or inside bay regions is a feasible method to modulate the properties of PDI-based non-fullerene acceptors.
基金the Fund from Hefei National Laboratory for Physical Sciences at the Microscale(Grant No.KF2020110)the Natural Science Foundation of Anhui Province,China(Grant No.1908085ME146)+3 种基金the Key Research and Development Plan of Anhui Province,China(Grant No.201904a05020049)the Director Fund of Institute of Solid State Physics,Chinese Academy of Sciences(Grant No.2019DFY01)the National Natural Science Foundation of China(Grant Nos.52071313 and 51971211)the Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(Grant Nos.YZJJZX202018 and YZJJ202102)。
文摘Non-stoichiometric copper selenide(Cu_(2-x)Se,x=0.18~0.25)nanomaterials have attracted extensive attentions due to their excellent thermoelectric,optoelectronic and photocatalytic performances.However,efficient production of Cu_(2-x)Se nanoparticles(NPs)through a green and convenient way is still hindered by the inevitable non-environmentally friendly operations in common chemical synthesis.Herein,we initially reveal the coexistence of seleninic acid content and elemental selenium(Se)NPs in pulsed laser-generated Se colloidal solution.Consequently,we put forward firstly a closedcycle reaction mode for totally green production of Cu_(1.8)Se NPs to exclude traditional requirements of high temperature and toxic precursors by using Se colloidal solution.In such closed-cycle reaction,seleninic acid works as the initiator to oxidize copper sheet to release cuprous ions which can catalyze the disproportion of Se NPs to form Se O_(3)^(2-)and Se^(2-)ions and further produce Cu_(2-x)Se NPs,and the by-product SeO_(3)^(2-)ions promote subsequent formation of cuprous from the excessive Cu sheet.In experiments,the adequate copper(Cu)sheet was simply dipped into such Se colloidal solution at 70℃,and then the stream of Cu_(1.8)SeNPs could be produced until the exhaustion of selenium source.The conversion rate of Se element reaches to more than 75%when the size of Se NPs in weakly acidic colloidal solution is limited between 1 nm and 50 nm.The laser irradiation duration shows negative correlation with the size of Se NPs and unobvious impact to the p H of the solution which both are essential to the high yield of Cu_(1.8)SeNPs.Before Cu sheet is exhausted,Se colloidal solution can be successively added without influences to the product quality and the Se conversion rate.Such green methodology positively showcases a brand-new and potential strategy for mass production of Cu_(2-x)Se nanomaterials.
基金supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200)the National Natural Science Foundation of China (NSFC, Nos. 52103236, 91963212, 21875260)Beijing National Laboratory for Molecular Sciences (No. BNLMSCXXM-202005)。
文摘Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
基金support from the National Key Research and Development(R&D)Program of China(No.2018YFA0208501)the National Natural Science Foundation of China(Nos.62104216,52321006)+4 种基金the Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202005)the China Postdoctoral Innovative Talent Support Program(No.BX2021271)the Key R&D and Promotion Project of Henan Province(No.192102210032)the Opening Project of State Key Laboratory of Advanced Technology for Float Glass(No.2022KF04)the Joint Research Project of Puyang Shengtong Juyuan New Materials Co.,Ltd.,and the Outstanding Young Talent Research Fund of Zhengzhou University.
文摘Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization.Despite achieving remarkable power conversion efficiency of up to 26.1%,a substantial discrepancy persists when compared to the theoretical Shockley-Queisser(SQ)limit.One of the most serious challenges facing perovskite solar cells is the energy loss incurred during photovoltaic conversion,which affects the SQ limits and stability of the device.More significant than the energy loss occurring in the bulk phase of the perovskite is the energy loss occurring at the surface-interface.Here,we provide a systematic overview of the physical and chemical properties of the surface-interface.Firstly,we delve into the underlying mechanism causing the energy deficit and structural degradation at the surface-interface,aiming to enhance the understanding of carrier transport processes and structural chemical reactivity.Furthermore,we systematically summarized the primary modulating pathways,including surface reconstruction,dimensional construction,and electric-field regulation.Finally,we propose directions for future research to advance the efficiency of perovskite solar cells towards the radiative limit and their widespread commercial application.
基金supported by grants from the National Key Research and Development Program of China(Nos.2018YFA0208902 and 2020YFC2002705)the National Natural Science Foundation of China(Nos.82272632 and 81672138)Beijing Science Foundation of China(No.7171008)。
文摘Synthetic lethality is a novel model for cancer therapy.To understand the function and mechanism of BEN domain-containing protein 4(BEND4)in pancreatic cancer,eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study.Methylation-specific polymerase chain reaction,CRISPR/Cas9,immunoprecipitation assay,comet assay,and xenograft mouse model were used.BEND4 is a new member of the BEN domain family.The expression of BEND4 is regulated by promoter region methylation.It is methylated in 58.1%(176/303)of pancreatic ductal adenocarcinoma(PDAC),33.3%(14/42)of intraductal papillary mucinous neoplasm,31.0%(13/42)of pancreatic neuroendocrine tumor,14.3%(3/21)of mucinous cystic neoplasm,4.3%(2/47)of solid pseudopapillary neoplasm,and 2.7%(1/37)of serous cystic neoplasm.BEND4 methylation is significantly associated with late-onset PDAC(>50 years,P<0.01)and tumor differentiation(P<0.0001),and methylation of BEND4 is an independent poor prognostic marker(P<0.01)in PDAC.Furthermore,BEND4 plays tumor-suppressive roles in vitro and in vivo.Mechanistically,BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair.Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor.Collectively,the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.
基金supported by the National Natural Science Foundation of China(No.52272242)the Provisional Key Research and Development Program of Henan Province(No.231111240600)+1 种基金the Natural Science Foundation of Henan Province(No.242300421428)the Start-up Funding for Scientific Research of Zhengzhou University(No.32310221).
文摘MXene is a promising electrode material for both high volumetric capacitance and high-rate performance in supercapacitors.However,the current study has mainly focused on the monometallic element Ti_(3)C_(2)T_(x) MXene until now,while the bimetallic and multimetallic MXene have received comparatively less attention.In this work,we demonstrate that the electronic structure of the Mo_(2)TiC_(2)T_(x) MXene could be regulated by fine-tuning the content of doped Nb atoms.The enhanced electron cloud density of surface–O termination and the electron spin of the Mo atoms in the Mo_(2)TiC_(2)T_(x) MXene,leads to the boost of electric double-layer capacitor(EDLC)and improvement of pseudocapacitance.As a consequence,the electrochemical performance of Nb-doped Mo_(2)TiC_(2)T_(x) MXene(Nb-0.3-MXene)demonstrates a capacitance of 398 F·cm^(−3),roughly doubling that of the pristine Mo_(2)TiC_(2)T_(x) MXene electrode at 197 F·cm^(−3) in the 3 M H_(2)SO_(4) electrolyte.At the same time,the Nb-0.3-MXene could even maintain a capacitance of 82.75% at 200 mV·s−1,with high cyclic stability for 19,000 cycles at 10 A·g−1.Additionally,Nb-0.3-MXene-based hybrid supercapacitors deliver a remarkable volumetric energy density of 48.1 W·h·L^(−1)at 230.7 W·L^(−1),and 34.4 W·h·L^(−1)at a high power density of 82.6 kW·L^(−1).There exists a balance between the volumetric capacitance and rate performance with different ratios of Nb atoms in the Nb-doped MXene due to the strong interaction between the Nb-doped MXene and the intercalated protons.Therefore,optimizing the electronic structure of MXene through heteroatom doping is of great potential for enhanced supercapacitor performance.
基金supported by the National Key R&D Program of China(No.2020YFC1910100)the National Natural Science Foundation of China(Nos.22006156 and 21876193)+1 种基金the Chengdu Science and Technology Bureau(No.2018-ZM01-00019-SN)the Youth Innovation Promotion Association CAS。
文摘Developing industrially moldable catalysts with harmonized redox performance and acidity is of great significance for the efficient disposal of chlorinated volatile organic compounds(CVOCs)in actual exhaust gasses.Here,commercial TiO_(2),typically used for molding catalysts,was chosen as the carrier to fabricate a series of Ce_(0.02)Mn_(0-0.24)TiO_(x) materials with different Mn doping ratios and employed for chlorobenzene(CB)destruction.The introduction of Mn remarkedly facilitated the synergistic effect of each element via the electron transfer processes:Ce^(3+)+Mn^(4+/3+)■Ce^(4+)+Mn^(3+/2+)and Mn^(4+/3+)+Ti^(4+)■Mn^(3+/2+)+Ti^(3+).These synergistic interactions in Ce_(0.02)Mn_(0.04-0.24)TiO_(x),especially Ce_(0.02)Mn_(0.16)TiO_(x),significantly elevated the active oxygen species,oxygen vacancies and redox properties,endowing the superior catalytic oxidation of CB.When the Mn doping amount increased to 0.24,a separate Mn_(3)O_(4) phase appeared,which in turn might weaken the synergistic effect.Furthermore,the acidity of Ce_(0.02)Mn_(0.04-0.24)TiO_(x) was decreased with the Mn doping,regulating the balance of redox property and acidity.Notably,Ce_(0.02)Mn_(0.16)TiO_(x) featured relatively abundant B-acid sites.Its coordinating redox ability and moderate acidity promoted the deep oxidation of CB and RCOOH-intermediates,as well as the rapid desorption of Cl species,thus obtaining sustainable reactivity.In comparison,CeTiO_(x) owned the strongest acidity,however,its poor redox property was not sufficient for the timely oxidative decomposition of the easier adsorbed CB,resulting in its rapid deactivation.This finding provides a promising strategy for the construction of efficient commercial molding catalysts to decompose the industrial-scale CVOCs.
基金supported by the National Natural Science Foundation of China(Nos.22307028,82341044,22027810)the National Basic Research Program of China(Nos.2022YFA1603701,2021YFA1200900)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)the Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(CIFMS 2019-I2M-5-018).
文摘Hypertension significantly increases the risk of cardiovascular diseases and seriously affects people’s health.The incidence of hypertension is rising rapidly in the world and hypertension has become a significant factor influencing the global average life expectancy.The diagnosis of hypertension is generally fulfilled by measuring diastolic and systolic blood pressure,but it is insufficient to differentiate essential hypertension from secondary hypertension,so it is crucial to identifying the cause of hypertension by detecting biomarkers in plasma.In clinical practice,five plasma biomarkers are utilized for diagnosing hypertension,and the detection tasks of a large number of cases have raised increasing demands for cost-effective,efficient,speedy,and diverse methods,which makes many traditional diagnostic technologies inadequate for meeting the needs of clinical diagnosis.The nanomaterial-based detection techniques have frequently attained the qualities of quick reaction,low cost,straightforward operation,high sensitivity,and strong specificity in recent years with the advancement of nanotechnology,so they have great potential for early and rapid diagnosis.In this review,we will introduce the characteristics and drawbacks of current clinical detection methods for hypertension screening,the principles and advancements of nanotechnology-based detection methods,as well as their potentials for clinical application.
基金the National Natural Science Foundation of China(Nos.62105293,91963212,52303257,and 52321006)the National Key Research and Development Program of China(No.2018YFA0208501)+6 种基金the Beijing National Laboratory for Molecular Sciences(No.BNLMSCXXM-202005)Graduate Education Reform Project of Henan Province(No.2023SJGLX136Y)the China Postdoctoral Science Foundation(Nos.2023TQ0300 and 2023M743171)the Key Scientific Research Projects of Colleges and Universities in Henan Province(No.23A430017)the Outstanding Young Talent Research Fund of Zhengzhou University,Opening Project of State Key Laboratory of Advanced Technology for Float Glass(No.2022KF04)the Joint Research Project of Puyang Shengtong Juyuan New Materials Co.,Ltd.,and Outstanding Young Talents Innovation Team Support Plan of Zhengzhou University.supported by the Henan Supercomputer Center.
文摘Perovskite solar cells(PSCs)have seen remarkable progress in recent years,largely attributed to various additives that enhance both efficiency and stability.Among these,fluorine-containing additives have garnered significant interest because of their unique hydrophobic properties,effective defect passivation,and regulation capability on the crystallization process.However,a targeted structural approach to design such additives is necessary to further enhance the performance of PSCs.Here,fluoroalkyl ethylene with different fluoroalkyl chain lengths(CH_(2)CH(CF_(2))nCF_(3),n=3,5,and 7)as liquid additives is used to investigate influences of fluoroalkyl chain lengths on crystallization regulation and defect passivation.The findings indicate that optimizing the quantity of F groups plays a crucial role in regulating the electron cloud distribution within the additive molecules.This optimization fosters strong hydrogen bonds and coordination effects with FA+and uncoordinated Pb^(2+),ultimately enhancing crystal quality and device performance.Notably,1H,1H,2H-perfluoro-1-hexene(PF_(3))with the optimal number of F presents the most effective modulation effect.A PSC utilizing PF_(3)achieves an efficiency of 24.05%,and exhibits exceptional stability against humidity and thermal fluctuations.This work sheds light on the importance of tailored structure designs in additives for achieving high-performance PSCs.