Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchang...Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.展开更多
The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of th...The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed.展开更多
Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrad...Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone展开更多
A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of di...A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of dissolved hydrocarbons varied with the hydrocarbon-generating potential of reservoirs. The concentrations of dissolved hydrocarbons were low in dry layers, water layers and gas-water layers, but high in gas reservoirs and oil reservoirs, especially in gas reservoirs with condensed oil. Series of carbon-number alkanes were usually absent in oilfield water from dry layers, water layers and gas-water layers but abundant in oilfield water from oil-water reservoirs, gas reservoirs and oil reservoirs, whose carbon numbers varied most widely in oil reservoirs and least in gas reservoirs. A preliminary evaluation model for reservoir hydrocarbon-generating potential was established based on the characteristics of dissolved hydrocarbons in oilfield water to assist hydrocarbon exploration.展开更多
A new geological model of Member 3 of Shahejie Formation reservoir in the Liuzan Oilfield, eastern Hebei Province was constructed by using modem reservoir modeling technology as sequence stratigraphy and conditional s...A new geological model of Member 3 of Shahejie Formation reservoir in the Liuzan Oilfield, eastern Hebei Province was constructed by using modem reservoir modeling technology as sequence stratigraphy and conditional simulation combined with traditional geological analysis. The model consists of a stratigraphic framework model, a structural model, a sedimentary model and a reservoir model. The study shows that the reservoir is a relatively integrated nose structure, whose strata can be divided into 4 sets of parasequence, 12 parasequences. The submerged branched channel of fan delta front is the favorable microfacies, which controls the geometric shape and physical properties of reservoir sandstone. Oil is distributed in premium reservoir sandstones at structural high positions. According to the new geological model, not only the geological contradictions appearing during oil field development are resolved, but also the oil-bearing area is enlarged by 2.7km^2 and geological reserves increased by 156.9 million tons. The production capacity of the Liuzan Oilfield is increased by 0.27 million tons per year.展开更多
The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because ...The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because of its strong reservoir heterogeneity and complex reservoir-controlling factors.Based on a large volume of core,thin section,logging,seismic,and geochemical data and numerous geological analyses,the reservoir-forming conditions and modes were systematically analyzed to guide the exploration and achieve important breakthroughs in the Yangshuiwu and Wen an slope buried hills.The study revealed that three sets of source rocks of the third and fourth members of the Shahejie Formation from the Paleogene and Carboniferous-Permian were developed in the Jizhong depression,providing sufficient material basis for the formation of buried hill oil and gas reservoirs.The reservoir control mechanism involving the three major factors of“cloud-karst-fault”was clarified,and karst cave,fracture fissure-pore,and cloud pore type reservoir models were established,thereby expanding the exploration potential.Controlled by the superposition of multi-stage tectonic processes during the Indosinian,Yanshanian,and Himalayan,two genetic buried hill trap types of uplift-depression and depression-uplift were formed.Based on the analysis of reservoir-forming factors of the Ordovician buried hill,three buried hill oil and gas reservoir-forming models were identified:low-level tectonic-lithologic composite quasi-layered buried hill,medium-level paleo-storage paleo-block buried hill,and high-level paleo-storage new-block buried hill.Comprehensive evaluations indicate that the reservoir-forming conditions of the low-level tectonic-lithologic composite quasi-layered buried hill in the northern portion of the Jizhong depression are the most favorable and that the Sicundian and Xinzhen buried hills are favorable areas for future exploration.展开更多
Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydro...Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydrocarbon accumulation model and enrichment law in the Linhe Depression of the Hetao Basin, NW China. The Hetao Basin mainly experienced three stages of evolution, namely, weak extensional fault depression, strong extensional fault depression and strike-slip transformation, giving rise to four positive structural belts(Jilantai, Shabu, Nalinhu and Xinglong), which are favorable areas for oil and gas accumulation. The two main saline lacustrine source rocks, Lower Cretaceous Guyang Formation and Oligocene Linhe Formation, are characterized by high sulfur content, rich algae, early maturity, early expulsion, and wide oil generation window. The large structural transition belt in the intermountain area around the Hetao Basin controls the formation of large-scale braided river delta deposits, which are characterized by high quartz content(50%-76%), long-term shallow burial and weak compaction, low cement content, and good reservoir properties in delta front sandbody. The burial depth of the effective Paleogene reservoirs is predicted to reach 8000 m. Three hydrocarbon accumulation models, nose-uplift near sag, buried hill surrounding sag, fault nose near source rock, are constructed. The law of hydrocarbon accumulation in the Linhe Depression is finally clarified as follows: near-source around the depression is the foundation, high-quality thick reservoir is the premise, good tectonic setting and trap conditions are the key.展开更多
Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fr...Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.展开更多
Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarb...Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarbons discovered in the Bohai Bay Basin in eastern China. This discovery suggests favorable exploration prospects for the deep parts of the basin. However, the discovery raises questions regarding the genesis and accumulation of hydrocarbons in deep reservoirs. Based on the geochemical features of the hydrocarbons and characteristics of the source rocks as well as thermal simulation experiments of hydrocarbon generation, we conclude that the oil and gas were generated from the highly mature Sha-4 Member (Es4) source rocks instead of thermal cracking of crude oils in earlier accumulations. The source kitchen with abnormal pressures and karsted carbonate reservoirs control the formation of high-maturity hydrocarbon accumulations in the buried hills (i.e., Niudong-1) in conjunction with several structural-lithologic traps in the ES4 reservoirs since the deposition of the upper Minghuazhen Formation. This means the oil and gas exploration potential in the deep parts of the Baxian Depression is probably high.展开更多
Rock thin-section identification is an indispensable geological exploration tool for understanding and recognizing the composition of the earth.It is also an important evaluation method for oil and gas exploration and...Rock thin-section identification is an indispensable geological exploration tool for understanding and recognizing the composition of the earth.It is also an important evaluation method for oil and gas exploration and development.It can be used to identify the petrological characteristics of reservoirs,determine the type of diagenesis,and distinguish the characteristics of reservoir space and pore structure.It is necessary to understand the physical properties and sedimentary environment of the reservoir,obtain the relevant parameters of the reservoir,formulate the oil and gas development plan,and reserve calculation.The traditional thin-section identification method has a history of more than one hundred years,which mainly depends on the geological experts'visual observation with the optical microscope,and is bothered by the problems of strong subjectivity,high dependence on experience,heavy workload,long identification cycle,and incapability to achieve complete and accurate quantification.In this paper,the models of particle segmentation,mineralogy identification,and pore type intelligent identification are constructed by using deep learning,computer vision,and other technologies,and the intelligent thinsection identification is realized.This paper overcomes the problem of multi-target recognition in the image sequence,constructs a fine-grained classification network under the multi-mode and multi-light source,and proposes a modeling scheme of data annotation while building models,forming a scientific,quantitative and efficient slice identification method.The experimental results and practical application results show that the thin-section intelligent identification technology proposed in this paper does not only greatly improves the identification efficiency,but also realizes the intuitive,accurate and quantitative identification results,which is a subversive innovation and change to the traditional thin-section identification practice.展开更多
Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source k...Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.展开更多
To investigate the influence of extractable organic matter (EOM) on pore evolution of lacustrine shales, Soxhlet extraction, using dichloromethane, was performed on a series of Chang 7 shale samples (Ordos Basin, C...To investigate the influence of extractable organic matter (EOM) on pore evolution of lacustrine shales, Soxhlet extraction, using dichloromethane, was performed on a series of Chang 7 shale samples (Ordos Basin, China) with vitrinite reflectance of 0.64% to 1.34%. Low-pressure gas adsorption experiments were conducted on the samples before and after extraction. The pore structure parameters were calculated from the gas adsorption data. The results show complex changes to the pore volumes and surface areas after extraction. The pore development of both the initial and extracted samples is strongly controlled by total organic carbon (TOC) content. Micropores developed mainly in organic matter (OM), while mesopores and macropores predominantly developed in fractions other than OM. The influence of EOM on micropores is stronger than on mesopores and macropores. Organic solvents with a higher boiling point should be used to explore the effect of EOM on pore structure in the future.展开更多
As an important part of South China Old Land, the Jiangnan Orogenic Belt plays a significant role in explaining the assembly and the evolution of the Upper Yangtze Block and Cathaysia, as well as the structure and gro...As an important part of South China Old Land, the Jiangnan Orogenic Belt plays a significant role in explaining the assembly and the evolution of the Upper Yangtze Block and Cathaysia, as well as the structure and growth mechanism of continental lithosphere in South China.The Lengjiaxi and the Banxi groups are the base strata of the west section of the Jiangnan Orogenic Belt.Thus, the research of geochronology and tectonic evolution of the Lengjiaxi and the Banxi groups is significant.The maximum sedimentary age of the Lengjiaxi Group is ca.862 Ma, and the minimum is ca.822 Ma.The Zhangjiawan Formation, which is situated in the upper part of the Banxi Group is ca.802 Ma.The Lengjiaxi Group and equivalent strata should thus belong to the Neoproterozoic in age.The Jiangnan Orogenic Belt consisting of the Lengjiaxi and the Banxi groups as important constituents is not a Greenville Orogen Belt(1.3 Ga–1.0 Ga).The Jiangnan Orogenic Belt is a recyclic orogenic belt, and the prototype basin is a foreland basin with materials derived from the southwest and the sediments belong to the active continental sedimentation.By combining large amounts of dating data of the Lengjiaxi and the Banxi groups as well as equivalent strata, the evolutionary model of the western section of the Jiangnan Orogenic Belt is established as follows: Before 862 Ma, the South China Ocean was subducted beneath the Upper Yangtze Block, while a continental island arc was formed on the side near the Upper Yangtze Block.The South China Ocean was not closed in this period.From 862 Ma to 822 Ma, the Upper Yangtze Block was collided with Cathaysia; and sediments began to be deposited in the foreland basin between the two blocks.The Lengjiaxi Group and equivalent strata were thus formed and the materials might be derived from the recyclic orogenic belt.From 822 Ma to 802 Ma, Cathaysia continued pushing to the Upper Yangtze Block, experienced the Jinning-Sibao Movement(Wuling Movement); as result, the folded basement of the Jiangnan Orogenic Belt was formed.After 802 Ma, Cathaysia and the Upper Yangtze Block were separated from each other, the Nanhua rift basin was formed and began to receive the sediments of the Banxi Group and equivalent strata.These large amounts of dating data and research results also indicate that before the collision of the Upper Yangtze Block with Cathaysia, materials of the continental crust became less and less from the southwest to the east in the Jiangnan Orogeneic Belt; only island arc and neomagmatic arc were developed in the eastern section.Ocean-continent subduction or continent-continent subduction took place in the western and southern sections, while intra-oceanic subduction occurred in the eastern section.Comprehensive analyses on U-Pb ages and Hf model ages of zircons, the main provenance of the Lengjiaxi Group is Cathaysia.展开更多
Crude oil has been discovered in the Paleogene and Neogene units of the Weixinan Sag in the Beibu Gulf Basin.To determine the source and accumulation mode of this crude oil,12 crude oil samples and 27 source rock samp...Crude oil has been discovered in the Paleogene and Neogene units of the Weixinan Sag in the Beibu Gulf Basin.To determine the source and accumulation mode of this crude oil,12 crude oil samples and 27 source rock samples were collected and an extensive organic geochemical analysis was conducted on them.Based on the geological conditions and the analytical results,the types,origins and accumulation patterns of crude oil in the study area were elucidated.Except for a shallowly-buried and biodegraded crude oil deposit in Neogene rocks,the crude oil samples in the study area were normal.All of the crude oils were derived from lacustrine source rocks.According to biomarker compositions,the crude oils could be divided into two families,A and B,distinctions that were reinforced by differences in carbon isotope composition and spatial distribution.Oil-source correlation analysis based on biomarkers revealed that Family A oils were derived from the mature oil shale at the bottom of the second member of the Liushagang Formation,while the Family B oils formed in the mature shale of the Liushagang Formation.The Family A oils,generated by oil shale,mainly migrated laterally along sand bodies and were then redistributed in adjacent reservoirs above and below the oil shale layer,as well as in shallow layers at high structural positions,occupying a wide distribution range.The Family B oils were generated by other shale units before migrating vertically along faults to form reservoirs nearby,resulting in a narrow distribution range.展开更多
The distribution and genetic mechanisms of abnormal pressures in the Bohai Bay Basin were systematically analyzed. Abnormal pressures are widely developed in the Bohai Bay Basin, primarily in the Paleogene E2s4, E2s3,...The distribution and genetic mechanisms of abnormal pressures in the Bohai Bay Basin were systematically analyzed. Abnormal pressures are widely developed in the Bohai Bay Basin, primarily in the Paleogene E2s4, E2s3, Es1, and Ed formations. From the onshore area of the Bohai Bay Basin to the center of the Bozhong area, the top depth of the overpressured zone in each depression increases gradually, the overpressured strata in each depression gradually move to younger formations, and the pressure structure successively alters from single-bottom- overpressure to double-bottom-overpressure and finally to double-top-overpressure. The distribution of overpressured area is consistent with the sedimentary migration controlled by the tectonic evolution of the Bohai Bay Basin, which is closely related to the hydrocarbon-generation capability of active source rocks. The overpressured strata are consistent with the source-rock intervals in each depression; the top of the overpressured zone is synchronous with the hydrocarbon generation threshold in each depression; the hydrocarbon generation capability is positively correlated with the overpressure magnitude in each formation. Undercompaction was the main mechanism of overpressure for depressions with fluid pressure coefficients less than 1.2, whereas hydrocarbon generation was the main mechanism for depressions with fluid pressure coefficients greater than 1.5.展开更多
For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in th...For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.展开更多
There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas ...There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas exploration in the Proterozoic–Lower Paleozoic(PLP)strata—the oldest marine strata—has been very limited.To more clearly understand the oil and gas formation conditions and distributions in the PLP marine carbonate strata,we analyzed and characterized the petroleum geological conditions,oil and gas reservoir types,and their distributions in thirteen giant oil and gas fields worldwide.This study reveals the main factors controlling their formation and distribution.Our analyses show that the source rocks for these giant oil and gas fields are mainly shale with a great abundance of type I–II organic matter and a high thermal evolution extent.The reservoirs are mainly gas reservoirs,and the reservoir rocks are dominated by dolomite.The reservoir types are mainly karst and reef–shoal bodies with well-developed dissolved pores and cavities,intercrystalline pores,and fractures.These reservoirs arehighly heterogeneous.The burial depth of the reservoirs is highly variable and somewhat negatively correlated to the porosity.The cap rocks are mainly thick evaporites and shales,with the thickness of the cap rocks positively correlated to the oil and gas reserves.The development of high-quality evaporite cap rock is highly favorable for oil and gas preservation.We identified four hydrocarbon generation models,and that the major source rocks have undergone a long period of burial and thermal evolution and are characterized by early and long periods of hydrocarbon generation.These giant oil and gas fields have diverse types of reservoirs and are mainly distributed in paleo-uplifts,slope zones,and platform margin reef-shoal bodies.The main factors that control their formation and distribution were identified,enabling the prediction of new favorable areas for oil and gas exploration.展开更多
Water invasion is a common phenomenon in gas reservoirs with active edge-and-bottom aquifers.Due to high reservoir heterogeneity and production parameters,carbonate gas reservoirs feature exploitation obstacles and lo...Water invasion is a common phenomenon in gas reservoirs with active edge-and-bottom aquifers.Due to high reservoir heterogeneity and production parameters,carbonate gas reservoirs feature exploitation obstacles and low recovery factors.In this study,combined core displacement and nuclear magnetic resonance(NMR)experiments explored the reservoir gas−water two-phase flow and remaining microscopic gas distribution during water invasion and gas injection.Consequently,for fracture core,the water-phase relative permeability is higher and the co-seepage interval is narrower than that of three pore cores during water invasion,whereas the water-drive recovery efficiency at different invasion rates is the lowest among all cores.Gas injection is beneficial for reducing water saturation and partially restoring the gas-phase relative permeability,especially for fracture core.The remaining gas distribution and the content are related to the core properties.Compared with pore cores,the water invasion rate strongly influences the residual gas distribution in fracture core.The results enhance the understanding of the water invasion mechanism,gas injection to resume production and the remaining gas distribution,so as to improve the recovery factors of carbonate gas reservoirs.展开更多
The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to b...The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.展开更多
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.
基金National Natural Science Foundation of China via grant number 52174035,52304048China Postdoctoral Science Foundation(2022M722637)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(2022KYCX026).
文摘Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.
基金This paper is supported by“National Natural Science Foundation of China(Grant No.42204106)”.
文摘The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed.
基金financially supported by the National Natural Science Foundation of China (Grant No.41272158 and 41172136)
文摘Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone
文摘A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of dissolved hydrocarbons varied with the hydrocarbon-generating potential of reservoirs. The concentrations of dissolved hydrocarbons were low in dry layers, water layers and gas-water layers, but high in gas reservoirs and oil reservoirs, especially in gas reservoirs with condensed oil. Series of carbon-number alkanes were usually absent in oilfield water from dry layers, water layers and gas-water layers but abundant in oilfield water from oil-water reservoirs, gas reservoirs and oil reservoirs, whose carbon numbers varied most widely in oil reservoirs and least in gas reservoirs. A preliminary evaluation model for reservoir hydrocarbon-generating potential was established based on the characteristics of dissolved hydrocarbons in oilfield water to assist hydrocarbon exploration.
文摘A new geological model of Member 3 of Shahejie Formation reservoir in the Liuzan Oilfield, eastern Hebei Province was constructed by using modem reservoir modeling technology as sequence stratigraphy and conditional simulation combined with traditional geological analysis. The model consists of a stratigraphic framework model, a structural model, a sedimentary model and a reservoir model. The study shows that the reservoir is a relatively integrated nose structure, whose strata can be divided into 4 sets of parasequence, 12 parasequences. The submerged branched channel of fan delta front is the favorable microfacies, which controls the geometric shape and physical properties of reservoir sandstone. Oil is distributed in premium reservoir sandstones at structural high positions. According to the new geological model, not only the geological contradictions appearing during oil field development are resolved, but also the oil-bearing area is enlarged by 2.7km^2 and geological reserves increased by 156.9 million tons. The production capacity of the Liuzan Oilfield is increased by 0.27 million tons per year.
基金major science and technology project of PetroChina“Research and application of key technologies for sustainable,effective and stable production exploration and development of North China Oilfield(2017e-15)”。
文摘The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because of its strong reservoir heterogeneity and complex reservoir-controlling factors.Based on a large volume of core,thin section,logging,seismic,and geochemical data and numerous geological analyses,the reservoir-forming conditions and modes were systematically analyzed to guide the exploration and achieve important breakthroughs in the Yangshuiwu and Wen an slope buried hills.The study revealed that three sets of source rocks of the third and fourth members of the Shahejie Formation from the Paleogene and Carboniferous-Permian were developed in the Jizhong depression,providing sufficient material basis for the formation of buried hill oil and gas reservoirs.The reservoir control mechanism involving the three major factors of“cloud-karst-fault”was clarified,and karst cave,fracture fissure-pore,and cloud pore type reservoir models were established,thereby expanding the exploration potential.Controlled by the superposition of multi-stage tectonic processes during the Indosinian,Yanshanian,and Himalayan,two genetic buried hill trap types of uplift-depression and depression-uplift were formed.Based on the analysis of reservoir-forming factors of the Ordovician buried hill,three buried hill oil and gas reservoir-forming models were identified:low-level tectonic-lithologic composite quasi-layered buried hill,medium-level paleo-storage paleo-block buried hill,and high-level paleo-storage new-block buried hill.Comprehensive evaluations indicate that the reservoir-forming conditions of the low-level tectonic-lithologic composite quasi-layered buried hill in the northern portion of the Jizhong depression are the most favorable and that the Sicundian and Xinzhen buried hills are favorable areas for future exploration.
基金Supported by the PetroChina Key Science and Technology (2021DJ0703)。
文摘Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydrocarbon accumulation model and enrichment law in the Linhe Depression of the Hetao Basin, NW China. The Hetao Basin mainly experienced three stages of evolution, namely, weak extensional fault depression, strong extensional fault depression and strike-slip transformation, giving rise to four positive structural belts(Jilantai, Shabu, Nalinhu and Xinglong), which are favorable areas for oil and gas accumulation. The two main saline lacustrine source rocks, Lower Cretaceous Guyang Formation and Oligocene Linhe Formation, are characterized by high sulfur content, rich algae, early maturity, early expulsion, and wide oil generation window. The large structural transition belt in the intermountain area around the Hetao Basin controls the formation of large-scale braided river delta deposits, which are characterized by high quartz content(50%-76%), long-term shallow burial and weak compaction, low cement content, and good reservoir properties in delta front sandbody. The burial depth of the effective Paleogene reservoirs is predicted to reach 8000 m. Three hydrocarbon accumulation models, nose-uplift near sag, buried hill surrounding sag, fault nose near source rock, are constructed. The law of hydrocarbon accumulation in the Linhe Depression is finally clarified as follows: near-source around the depression is the foundation, high-quality thick reservoir is the premise, good tectonic setting and trap conditions are the key.
基金support from the National Natural Science Foundation of China (Grant Nos. 51274216 and 51322404)
文摘Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.
文摘Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarbons discovered in the Bohai Bay Basin in eastern China. This discovery suggests favorable exploration prospects for the deep parts of the basin. However, the discovery raises questions regarding the genesis and accumulation of hydrocarbons in deep reservoirs. Based on the geochemical features of the hydrocarbons and characteristics of the source rocks as well as thermal simulation experiments of hydrocarbon generation, we conclude that the oil and gas were generated from the highly mature Sha-4 Member (Es4) source rocks instead of thermal cracking of crude oils in earlier accumulations. The source kitchen with abnormal pressures and karsted carbonate reservoirs control the formation of high-maturity hydrocarbon accumulations in the buried hills (i.e., Niudong-1) in conjunction with several structural-lithologic traps in the ES4 reservoirs since the deposition of the upper Minghuazhen Formation. This means the oil and gas exploration potential in the deep parts of the Baxian Depression is probably high.
基金supported by the Project of Basic Science Center for the National Natural Science Foundation of China(Grant No.72088101)。
文摘Rock thin-section identification is an indispensable geological exploration tool for understanding and recognizing the composition of the earth.It is also an important evaluation method for oil and gas exploration and development.It can be used to identify the petrological characteristics of reservoirs,determine the type of diagenesis,and distinguish the characteristics of reservoir space and pore structure.It is necessary to understand the physical properties and sedimentary environment of the reservoir,obtain the relevant parameters of the reservoir,formulate the oil and gas development plan,and reserve calculation.The traditional thin-section identification method has a history of more than one hundred years,which mainly depends on the geological experts'visual observation with the optical microscope,and is bothered by the problems of strong subjectivity,high dependence on experience,heavy workload,long identification cycle,and incapability to achieve complete and accurate quantification.In this paper,the models of particle segmentation,mineralogy identification,and pore type intelligent identification are constructed by using deep learning,computer vision,and other technologies,and the intelligent thinsection identification is realized.This paper overcomes the problem of multi-target recognition in the image sequence,constructs a fine-grained classification network under the multi-mode and multi-light source,and proposes a modeling scheme of data annotation while building models,forming a scientific,quantitative and efficient slice identification method.The experimental results and practical application results show that the thin-section intelligent identification technology proposed in this paper does not only greatly improves the identification efficiency,but also realizes the intuitive,accurate and quantitative identification results,which is a subversive innovation and change to the traditional thin-section identification practice.
文摘Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.
基金funded by the National Science Foundation of China(41502144,41503034)the Foundation of the State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1612)+2 种基金the Fund of the Education Department of Sichuan Province(16ZA0075)the Youth Scientific Innovation Team of Hydrocarbon Accumulation and Geochemistry,Southwest Petroleum University(2015CXTD02)the Sichuan Province University Scientific Innovation Team Construction Project(USITCP)
文摘To investigate the influence of extractable organic matter (EOM) on pore evolution of lacustrine shales, Soxhlet extraction, using dichloromethane, was performed on a series of Chang 7 shale samples (Ordos Basin, China) with vitrinite reflectance of 0.64% to 1.34%. Low-pressure gas adsorption experiments were conducted on the samples before and after extraction. The pore structure parameters were calculated from the gas adsorption data. The results show complex changes to the pore volumes and surface areas after extraction. The pore development of both the initial and extracted samples is strongly controlled by total organic carbon (TOC) content. Micropores developed mainly in organic matter (OM), while mesopores and macropores predominantly developed in fractions other than OM. The influence of EOM on micropores is stronger than on mesopores and macropores. Organic solvents with a higher boiling point should be used to explore the effect of EOM on pore structure in the future.
基金supported by National Major Projects of Oil and Gas (2011ZX05043-005)Geological Survey Project of China Geological Survey (1212011120115, 1212011120117 and 121201011120131)Natural Science Fund Project (40921062)
文摘As an important part of South China Old Land, the Jiangnan Orogenic Belt plays a significant role in explaining the assembly and the evolution of the Upper Yangtze Block and Cathaysia, as well as the structure and growth mechanism of continental lithosphere in South China.The Lengjiaxi and the Banxi groups are the base strata of the west section of the Jiangnan Orogenic Belt.Thus, the research of geochronology and tectonic evolution of the Lengjiaxi and the Banxi groups is significant.The maximum sedimentary age of the Lengjiaxi Group is ca.862 Ma, and the minimum is ca.822 Ma.The Zhangjiawan Formation, which is situated in the upper part of the Banxi Group is ca.802 Ma.The Lengjiaxi Group and equivalent strata should thus belong to the Neoproterozoic in age.The Jiangnan Orogenic Belt consisting of the Lengjiaxi and the Banxi groups as important constituents is not a Greenville Orogen Belt(1.3 Ga–1.0 Ga).The Jiangnan Orogenic Belt is a recyclic orogenic belt, and the prototype basin is a foreland basin with materials derived from the southwest and the sediments belong to the active continental sedimentation.By combining large amounts of dating data of the Lengjiaxi and the Banxi groups as well as equivalent strata, the evolutionary model of the western section of the Jiangnan Orogenic Belt is established as follows: Before 862 Ma, the South China Ocean was subducted beneath the Upper Yangtze Block, while a continental island arc was formed on the side near the Upper Yangtze Block.The South China Ocean was not closed in this period.From 862 Ma to 822 Ma, the Upper Yangtze Block was collided with Cathaysia; and sediments began to be deposited in the foreland basin between the two blocks.The Lengjiaxi Group and equivalent strata were thus formed and the materials might be derived from the recyclic orogenic belt.From 822 Ma to 802 Ma, Cathaysia continued pushing to the Upper Yangtze Block, experienced the Jinning-Sibao Movement(Wuling Movement); as result, the folded basement of the Jiangnan Orogenic Belt was formed.After 802 Ma, Cathaysia and the Upper Yangtze Block were separated from each other, the Nanhua rift basin was formed and began to receive the sediments of the Banxi Group and equivalent strata.These large amounts of dating data and research results also indicate that before the collision of the Upper Yangtze Block with Cathaysia, materials of the continental crust became less and less from the southwest to the east in the Jiangnan Orogeneic Belt; only island arc and neomagmatic arc were developed in the eastern section.Ocean-continent subduction or continent-continent subduction took place in the western and southern sections, while intra-oceanic subduction occurred in the eastern section.Comprehensive analyses on U-Pb ages and Hf model ages of zircons, the main provenance of the Lengjiaxi Group is Cathaysia.
文摘Crude oil has been discovered in the Paleogene and Neogene units of the Weixinan Sag in the Beibu Gulf Basin.To determine the source and accumulation mode of this crude oil,12 crude oil samples and 27 source rock samples were collected and an extensive organic geochemical analysis was conducted on them.Based on the geological conditions and the analytical results,the types,origins and accumulation patterns of crude oil in the study area were elucidated.Except for a shallowly-buried and biodegraded crude oil deposit in Neogene rocks,the crude oil samples in the study area were normal.All of the crude oils were derived from lacustrine source rocks.According to biomarker compositions,the crude oils could be divided into two families,A and B,distinctions that were reinforced by differences in carbon isotope composition and spatial distribution.Oil-source correlation analysis based on biomarkers revealed that Family A oils were derived from the mature oil shale at the bottom of the second member of the Liushagang Formation,while the Family B oils formed in the mature shale of the Liushagang Formation.The Family A oils,generated by oil shale,mainly migrated laterally along sand bodies and were then redistributed in adjacent reservoirs above and below the oil shale layer,as well as in shallow layers at high structural positions,occupying a wide distribution range.The Family B oils were generated by other shale units before migrating vertically along faults to form reservoirs nearby,resulting in a narrow distribution range.
基金the National Natural Science Foundation(Grant No.41502129)the Important National Science & Technology Specific Projects(grant No.2016ZX05006-003)the Fundamental Research Funds for the Central Universities(grant No.14CX05015A)
文摘The distribution and genetic mechanisms of abnormal pressures in the Bohai Bay Basin were systematically analyzed. Abnormal pressures are widely developed in the Bohai Bay Basin, primarily in the Paleogene E2s4, E2s3, Es1, and Ed formations. From the onshore area of the Bohai Bay Basin to the center of the Bozhong area, the top depth of the overpressured zone in each depression increases gradually, the overpressured strata in each depression gradually move to younger formations, and the pressure structure successively alters from single-bottom- overpressure to double-bottom-overpressure and finally to double-top-overpressure. The distribution of overpressured area is consistent with the sedimentary migration controlled by the tectonic evolution of the Bohai Bay Basin, which is closely related to the hydrocarbon-generation capability of active source rocks. The overpressured strata are consistent with the source-rock intervals in each depression; the top of the overpressured zone is synchronous with the hydrocarbon generation threshold in each depression; the hydrocarbon generation capability is positively correlated with the overpressure magnitude in each formation. Undercompaction was the main mechanism of overpressure for depressions with fluid pressure coefficients less than 1.2, whereas hydrocarbon generation was the main mechanism for depressions with fluid pressure coefficients greater than 1.5.
基金financially sponsored by Research Institute of Petroleum Exploration&Development(PETROCHINA)Scientific Research And Technology Development Projects(No.2016ycq02)China National Petroleum Corporation Science&Technology Development Projects(No.2015B-3712)Ministry of National Science&Technique(No.2016ZX05007-006)
文摘For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.
基金sponsored by the National Key Basic Research Program of China (973 Program, 2012CB214806)the National Natural Science Foundation of China (No. 41372144)
文摘There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas exploration in the Proterozoic–Lower Paleozoic(PLP)strata—the oldest marine strata—has been very limited.To more clearly understand the oil and gas formation conditions and distributions in the PLP marine carbonate strata,we analyzed and characterized the petroleum geological conditions,oil and gas reservoir types,and their distributions in thirteen giant oil and gas fields worldwide.This study reveals the main factors controlling their formation and distribution.Our analyses show that the source rocks for these giant oil and gas fields are mainly shale with a great abundance of type I–II organic matter and a high thermal evolution extent.The reservoirs are mainly gas reservoirs,and the reservoir rocks are dominated by dolomite.The reservoir types are mainly karst and reef–shoal bodies with well-developed dissolved pores and cavities,intercrystalline pores,and fractures.These reservoirs arehighly heterogeneous.The burial depth of the reservoirs is highly variable and somewhat negatively correlated to the porosity.The cap rocks are mainly thick evaporites and shales,with the thickness of the cap rocks positively correlated to the oil and gas reserves.The development of high-quality evaporite cap rock is highly favorable for oil and gas preservation.We identified four hydrocarbon generation models,and that the major source rocks have undergone a long period of burial and thermal evolution and are characterized by early and long periods of hydrocarbon generation.These giant oil and gas fields have diverse types of reservoirs and are mainly distributed in paleo-uplifts,slope zones,and platform margin reef-shoal bodies.The main factors that control their formation and distribution were identified,enabling the prediction of new favorable areas for oil and gas exploration.
基金Project(2016ZX05017)supported by the China National Science and Technology Major Project
文摘Water invasion is a common phenomenon in gas reservoirs with active edge-and-bottom aquifers.Due to high reservoir heterogeneity and production parameters,carbonate gas reservoirs feature exploitation obstacles and low recovery factors.In this study,combined core displacement and nuclear magnetic resonance(NMR)experiments explored the reservoir gas−water two-phase flow and remaining microscopic gas distribution during water invasion and gas injection.Consequently,for fracture core,the water-phase relative permeability is higher and the co-seepage interval is narrower than that of three pore cores during water invasion,whereas the water-drive recovery efficiency at different invasion rates is the lowest among all cores.Gas injection is beneficial for reducing water saturation and partially restoring the gas-phase relative permeability,especially for fracture core.The remaining gas distribution and the content are related to the core properties.Compared with pore cores,the water invasion rate strongly influences the residual gas distribution in fracture core.The results enhance the understanding of the water invasion mechanism,gas injection to resume production and the remaining gas distribution,so as to improve the recovery factors of carbonate gas reservoirs.
基金Supported by the CNPC Huabei Oilfield Science and Technology Development Project(HBYT-CYY-2014-JS-378,HBYT-CYY-2015-JS-47)
文摘The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.