期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deformation monitoring of long-span railway bridges based on SBAS-InSAR technology 被引量:1
1
作者 Lv Zhou Xinyi Li +4 位作者 Yuanjin Pan Jun Ma Cheng Wang Anping Shi Yukai Chen 《Geodesy and Geodynamics》 EI CSCD 2024年第2期122-132,共11页
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ... The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges. 展开更多
关键词 SBAS-InSAR Long-span railway bridge Deformation monitoring Bridge structure Time series deformation
下载PDF
Revisiting the period and quality factor of the Chandler wobble and its possible geomagnetic jerk excitation 被引量:1
2
作者 Yachong An Hao Ding 《Geodesy and Geodynamics》 CSCD 2022年第5期427-434,共8页
The period and quality factor of the Chandler wobble(CW)are useful for constraining the Earth’s internal structure properties,such as the mantle elasticity.It has been shown that the CW is mainly excited by a combina... The period and quality factor of the Chandler wobble(CW)are useful for constraining the Earth’s internal structure properties,such as the mantle elasticity.It has been shown that the CW is mainly excited by a combination of atmospheric and oceanic processes;hence based on a deconvolution method,we can remove them from the excitation sequence of the CW to estimate its period P and quality factor Q.We finally re-estimate P=432.3±0.8 days and Q=85±15 for the CW.Based on those two estimates,we investigate the relationship between the geomagnetic jerks and the excitation sequences of the CW.The geomagnetic jerks or jerk bounds are well consistent with the sudden changes of the excitation sequences of the CW.This demonstrates that the geomagnetic jerks could be a possible excitation source of the CW.It is crucial for understanding the excitation of the CW and for deeper geophysical insights into the geomagnetic jerks. 展开更多
关键词 Chandler wobble Quality factor De-convolution Geomagnetic jerks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部