This article summarizes the activities and the results of the Globus software evaluation,which was carried out in the framework of the INFN-GRID project.
We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the ...We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.展开更多
This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to fac...This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to facilitate the digital registration and identification of a wide range of particle information.Its design ensures easy integration with different event generators and digital simulations commonly used in high-energy experiments.Moreover,this innovative framework can be easily expanded to encode complex multi-quark states comprising up to nine valence quarks and accommodating an angular momentum of up to 99/2.This versatility and scalability make it a valuable tool.展开更多
One-neutron stripping process between^(6)Li and^(209)Bi was studied at 28,30,and 34 MeV using the in-beamγ-ray spectroscopy method.Theγ-γcoincident analysis clearly identified twoγ-rays feeding the ground and long...One-neutron stripping process between^(6)Li and^(209)Bi was studied at 28,30,and 34 MeV using the in-beamγ-ray spectroscopy method.Theγ-γcoincident analysis clearly identified twoγ-rays feeding the ground and long-lived isomeric states,which were employed to determine the cross section.The one-neutron stripping cross sections were similar to the cross sections of complete fusion in the^(6)Li+^(209)Bi system,but the one-neutron stripping cross sections decreased more gradually at the sub-barrier region.A coupled-reaction-channel calculation was performed to study the detailed reaction mechanism of the one-neutron stripping process in^(6)Li.The calculations indicated that the first excited state of 5 Li is critical in the actual one-neutron transfer mechanism,and the valence proton of 209Bi can be excited to the low-lying excited state in(^(6)Li,^(5)Li)reaction,unlike in the(d,p)reaction.展开更多
The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometer...The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].展开更多
The success of LISA Pathfinder in demonstrating the LISA drag-free requirement paved the way for using space interferometers to detect low-frequency and middle-frequency gravitational waves(GWs). The TAIJI GW mission ...The success of LISA Pathfinder in demonstrating the LISA drag-free requirement paved the way for using space interferometers to detect low-frequency and middle-frequency gravitational waves(GWs). The TAIJI GW mission and the new LISA GW mission propose using an arm length of 3 Gm(1 Gm = 10~6 km) and an arm length of 2.5 Gm respectively. For a space laser-interferometric GW antenna,due to astrodynamical orbit variation, time delay interferometry(TDI) is needed to achieve nearly equivalent equal-arms for suppressing the laser frequency noise below the level of optical path noise, acceleration noise, etc in order to attain the requisite sensitivity. In this paper, we simulate TDI numerically for the TAIJI mission and the new LISA mission. To do this, we work out a set of 2200-day(6-year) optimized science orbits for each mission starting on 2028 March 22 using the CGC 2.7.1 ephemeris framework. Then we use the numerical method to calculate the residual optical path differences of the first-generation TDI configurations and the selected second-generation TDI configurations. The resulting optical path differences of the second-generation TDI configurations calculated for TAIJI, new LISA and eLISA are well below their respective requirements for laser frequency noise cancelation. However, for the first-generation TDI configurations, the original requirements need to be relaxed by 3 to 30 fold to be satisfied. For TAIJI and the new LISA, about one order of magnitude relaxation would be good and recommended; this could be borne on the laser stability requirement in view of recent progress in laser stability, or the GW detection sensitivities of the second-generation TDIs have to be used in the diagnosis of the observed data instead of the commonly used X, Y and Z TDIs.展开更多
The experimental data concerning the58Ni+48Ca reaction at Elab(Ni)=25A MeV,collected by using the CHIMERA 4π device,have been analyzed in order to investigate the competition among different reaction mechanisms for c...The experimental data concerning the58Ni+48Ca reaction at Elab(Ni)=25A MeV,collected by using the CHIMERA 4π device,have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain.As a main criterion for centrality selection we have chosen the flow angle(flow) method,making an event-by-event analysis that considers the shape of events,as it is determined by the eigenvectors of the experimental kinetic-energy tensor.For the selected central events(flow >60°) some global variables,good to characterize the pattern of central collisions have been constructed.The main features of the reaction products were explored by using different constraints on some of the relevant observables,like mass and velocity distributions and their correlations.Much emphasis was devoted,for central collisions,to the competition between fusion-evaporation processes with subsequent identification of a heavy residue and a possible multifragmentation mechanism of a well defined(if any) transient nuclear system.Dynamical evolution of the system and pre-equilibrium emission were taken into account by simulating the reactions in the framework of transport theories.Different approaches have been envisaged(dynamical stochastic BNV calculations + sequential SIMON code,QMD,CoMD,etc.).Preliminary comparison of the experimental data with BNV calculations shows reasonable agreement with the assumption of sequential multifragmentation emission in the mass region of IMFs close to the heavy residues.Possible deviations from sequential processes were found for those IMFs in the region of masses intermediate between the mass of heavy residues and the mass of light IMFs.Further simulations are in progress.The experimental analysis will be enriched also by information obtained inspecting the IMF-IMF correlation function,in order to elucidated the nature of space-time decay property of the emitting source associated with events having the largest IMF multiplicity.展开更多
In recent years, machine learning(ML) techniques have emerged as powerful tools for studying many-body complex systems, and encompassing phase transitions in various domains of physics. This mini review provides a con...In recent years, machine learning(ML) techniques have emerged as powerful tools for studying many-body complex systems, and encompassing phase transitions in various domains of physics. This mini review provides a concise yet comprehensive examination of the advancements achieved in applying ML to investigate phase transitions, with a primary focus on those involved in nuclear matter studies.展开更多
Radiochromic film is a useful tool for beam quality assurance, but accurate response assessment of the film is still a problem. In this study, the response uncertainties of HDV2 film were investigated using a flatbed ...Radiochromic film is a useful tool for beam quality assurance, but accurate response assessment of the film is still a problem. In this study, the response uncertainties of HDV2 film were investigated using a flatbed scanner from both the scanning settings and interscan variability. Scanning settings are fixed conditions for scanning, including scanning resolution and focus setting.In this study, multipeak distributions of pixel values were found under some dots-per-inch values, which should be avoided, and the optimal setting of 2000 dpi without this problem was selected. By changing the focus setting, the relative standard deviation of pixel values was reduced by 36–50%. The influence of the interscan variability induced by three factors was investigated, including the outside illumination intensity, film homogeneity, and operating temperature. Scanning the film before and after irradiation at the same position was recommended. Moreover, the suitable operating temperature range for the scanner was found to be 15–24 °C, which results in stable film responses. Regarding the studied factors, correction methods and strategies were proposed, and the accurate response assessment of HDV2 film was realized. Finally, a standard operating procedure for response assessment of films was introduced. It can help other researchers study more scanners, films, and particle types.展开更多
文摘This article summarizes the activities and the results of the Globus software evaluation,which was carried out in the framework of the INFN-GRID project.
基金Supported in part by the National Key R&D Program of China(2020YFA0406400,2020YFA0406300,2023YFA1606000)the National Natural Science Foundation of China(123B2077,12035009,11635010,11735014,11875054,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+8 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP),the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG(455635585,FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of Mongolia,National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907),the Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.
基金the Department of Education of Hunan Province,China(No.21A0541)the U.S.Department of Energy(No.DE-FG03-93ER40773)H.Z.acknowledges the financial support from Key Laboratory of Quark and Lepton Physics in Central China Normal University(No.QLPL2024P01)。
文摘This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to facilitate the digital registration and identification of a wide range of particle information.Its design ensures easy integration with different event generators and digital simulations commonly used in high-energy experiments.Moreover,this innovative framework can be easily expanded to encode complex multi-quark states comprising up to nine valence quarks and accommodating an angular momentum of up to 99/2.This versatility and scalability make it a valuable tool.
基金the National Nature Science Foundation of China(Nos.U2167204,11975040,and U1832130)the Brazilian funding agencies CAPES,CNPq,FAPERJ,and the INCT-FNA(Instituto Nacional de Ciência e Tecnologia-Física Nuclear e Aplicações)+5 种基金research project 464898/2014-5.S.P.Hu was supported by Guang dong Key Research And Development Program(No.2020B040420005)Guang dong Basic and Applied Basic Research Foundation(No.2021B1515120027)Ling Chuang Research Project of China National Nuclear Corporation(No.20221024000072F6-0002-7)Nuclear Energy Development and Research Project(No.HNKF202224(28))the‘111’center(B20065)the U.S.Department of Energy,Office of Science,Office of Nuclear Physics,under contract number DE-AC02-06CH1135.
文摘One-neutron stripping process between^(6)Li and^(209)Bi was studied at 28,30,and 34 MeV using the in-beamγ-ray spectroscopy method.Theγ-γcoincident analysis clearly identified twoγ-rays feeding the ground and long-lived isomeric states,which were employed to determine the cross section.The one-neutron stripping cross sections were similar to the cross sections of complete fusion in the^(6)Li+^(209)Bi system,but the one-neutron stripping cross sections decreased more gradually at the sub-barrier region.A coupled-reaction-channel calculation was performed to study the detailed reaction mechanism of the one-neutron stripping process in^(6)Li.The calculations indicated that the first excited state of 5 Li is critical in the actual one-neutron transfer mechanism,and the valence proton of 209Bi can be excited to the low-lying excited state in(^(6)Li,^(5)Li)reaction,unlike in the(d,p)reaction.
文摘The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].
基金funding in support of his work leading to these results from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ (PEOPLE-2013-ITN) under REA grant agreement n [606176]
文摘The success of LISA Pathfinder in demonstrating the LISA drag-free requirement paved the way for using space interferometers to detect low-frequency and middle-frequency gravitational waves(GWs). The TAIJI GW mission and the new LISA GW mission propose using an arm length of 3 Gm(1 Gm = 10~6 km) and an arm length of 2.5 Gm respectively. For a space laser-interferometric GW antenna,due to astrodynamical orbit variation, time delay interferometry(TDI) is needed to achieve nearly equivalent equal-arms for suppressing the laser frequency noise below the level of optical path noise, acceleration noise, etc in order to attain the requisite sensitivity. In this paper, we simulate TDI numerically for the TAIJI mission and the new LISA mission. To do this, we work out a set of 2200-day(6-year) optimized science orbits for each mission starting on 2028 March 22 using the CGC 2.7.1 ephemeris framework. Then we use the numerical method to calculate the residual optical path differences of the first-generation TDI configurations and the selected second-generation TDI configurations. The resulting optical path differences of the second-generation TDI configurations calculated for TAIJI, new LISA and eLISA are well below their respective requirements for laser frequency noise cancelation. However, for the first-generation TDI configurations, the original requirements need to be relaxed by 3 to 30 fold to be satisfied. For TAIJI and the new LISA, about one order of magnitude relaxation would be good and recommended; this could be borne on the laser stability requirement in view of recent progress in laser stability, or the GW detection sensitivities of the second-generation TDIs have to be used in the diagnosis of the observed data instead of the commonly used X, Y and Z TDIs.
文摘The experimental data concerning the58Ni+48Ca reaction at Elab(Ni)=25A MeV,collected by using the CHIMERA 4π device,have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain.As a main criterion for centrality selection we have chosen the flow angle(flow) method,making an event-by-event analysis that considers the shape of events,as it is determined by the eigenvectors of the experimental kinetic-energy tensor.For the selected central events(flow >60°) some global variables,good to characterize the pattern of central collisions have been constructed.The main features of the reaction products were explored by using different constraints on some of the relevant observables,like mass and velocity distributions and their correlations.Much emphasis was devoted,for central collisions,to the competition between fusion-evaporation processes with subsequent identification of a heavy residue and a possible multifragmentation mechanism of a well defined(if any) transient nuclear system.Dynamical evolution of the system and pre-equilibrium emission were taken into account by simulating the reactions in the framework of transport theories.Different approaches have been envisaged(dynamical stochastic BNV calculations + sequential SIMON code,QMD,CoMD,etc.).Preliminary comparison of the experimental data with BNV calculations shows reasonable agreement with the assumption of sequential multifragmentation emission in the mass region of IMFs close to the heavy residues.Possible deviations from sequential processes were found for those IMFs in the region of masses intermediate between the mass of heavy residues and the mass of light IMFs.Further simulations are in progress.The experimental analysis will be enriched also by information obtained inspecting the IMF-IMF correlation function,in order to elucidated the nature of space-time decay property of the emitting source associated with events having the largest IMF multiplicity.
基金partially supported by the National Natural Science Foundation of China(Grant Nos. 11890710, 11890714, and 12147101)the BMBF funded KISS consortium (Grant No. 05D23RI1) in the ErUM-Data action plan。
文摘In recent years, machine learning(ML) techniques have emerged as powerful tools for studying many-body complex systems, and encompassing phase transitions in various domains of physics. This mini review provides a concise yet comprehensive examination of the advancements achieved in applying ML to investigate phase transitions, with a primary focus on those involved in nuclear matter studies.
基金supported by the National Natural Science Foundation of China(No.11805100)the Natural Science Foundation of Jiangsu Province(No.BK20180415)+3 种基金the National Key Research and Development Program(No.2016YFE0103600)the National Key Research and Development Program(No.2017YFC0107700)the Foundation of Graduate Innovation Center in NUAA(No.kfjj20180614)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Radiochromic film is a useful tool for beam quality assurance, but accurate response assessment of the film is still a problem. In this study, the response uncertainties of HDV2 film were investigated using a flatbed scanner from both the scanning settings and interscan variability. Scanning settings are fixed conditions for scanning, including scanning resolution and focus setting.In this study, multipeak distributions of pixel values were found under some dots-per-inch values, which should be avoided, and the optimal setting of 2000 dpi without this problem was selected. By changing the focus setting, the relative standard deviation of pixel values was reduced by 36–50%. The influence of the interscan variability induced by three factors was investigated, including the outside illumination intensity, film homogeneity, and operating temperature. Scanning the film before and after irradiation at the same position was recommended. Moreover, the suitable operating temperature range for the scanner was found to be 15–24 °C, which results in stable film responses. Regarding the studied factors, correction methods and strategies were proposed, and the accurate response assessment of HDV2 film was realized. Finally, a standard operating procedure for response assessment of films was introduced. It can help other researchers study more scanners, films, and particle types.