期刊文献+
共找到1,762篇文章
< 1 2 89 >
每页显示 20 50 100
Process engineering of demineralisation of moderate to high ash Indian coals through NaOH‑HCl leaching and HF leaching
1
作者 Heena Dhawan D.K.Sharma 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期111-122,共12页
Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals... Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals. 展开更多
关键词 Alkali–acid leaching DEMINERALISATION Integrated process Rare earth elements
下载PDF
Exploring the combination of biochar‐amended soil and automated irrigation technology for water regulation and preservation in green infrastructure
2
作者 Honghu Zhu Yuanxu Huang +4 位作者 Haihong Song Jian Chen Songlei Han Tanwee Mazumder Ankit Garg 《Deep Underground Science and Engineering》 2024年第1期39-52,共14页
Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water content... Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment. 展开更多
关键词 BIOCHAR drip irrigation UNDERGROUND water preservation water regulation
下载PDF
Exploring the Reasons for Selfie-Taking and Selfie-Posting on Social Media with Its Effect on Psychological and Social Lives:A Study among Indian Youths
3
作者 Divya P.Vijayan Tokani Ghuhato +3 位作者 Eslavath Rajkumar Allen Joshua George Romate John John Abraham 《International Journal of Mental Health Promotion》 2024年第5期389-398,共10页
‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown... ‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown rapidly within a short time.In light of the new trend set by the generation,this study aimed to explore reasons for selfie-taking and selfie-posting on social media and their effects on the social and psychological lives of young adults.A purposive sampling method was adopted to select 20 Indian citizens,between 18 and 24 years.The data were collected through semi-structured interviews and analysed using thematic analysis.Selfie-taking and posting on social media give positive feelings,and it acts as a mood modifier dependent mostly on the favourability and feedback about the post which in turn affects emotions and self-satisfaction. 展开更多
关键词 Selfie social media social networking sites obsessive selfie-taking Indian youth
下载PDF
Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context 被引量:6
4
作者 Alka D.Kamble Vinod Kumar Saxena +1 位作者 Prakash Dhondiram Chavan Vinod Atmaram Mendhe 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期171-186,共16页
Co-gasification of coal and biomass is emerging as potential clean fuel technology to achieve high thermodynamic efficiency with relatively low CO2 emission. The coal and biomass have been exclusively gasified more th... Co-gasification of coal and biomass is emerging as potential clean fuel technology to achieve high thermodynamic efficiency with relatively low CO2 emission. The coal and biomass have been exclusively gasified more than a century to obtain gas–liquid fuels and the production of chemicals. Co-gasification has higher efficiency than the solitary coal gasification because the cellulose, hemicellulose and lignin content of biomass help to ignite and enhance the rate of gasification. It is suggested that the extensive research on carbon reactivity pattern, heat release, reaction kinetics, etc. may support to reduce the uncertainties in the co-gasification performance of coal and biomass blends, particularly in India. The prospects of co-gasification technology in Indian context have been discussed considering the abundance of varieties of coal and biomass. The suitability of existing gasifier procedures and their limitations with operating parameters like temperature, residence time, density optimisation, feed rate, agglomeration intensity, the tar formation and techno-economics involved are described. Also, this paper reviews the research highlights of the history of co-gasification and the advancement in upcoming challenges like a design of gasifier, access and preparation of biomass, disposal of residue, environmental concerns and reassurance to the operators for execution of large and small-scale projects. 展开更多
关键词 CO-GASIFICATION COAL BIOMASS CLEAN fuel Advancement Challenges
下载PDF
Numerical analysis of moving train induced vibrations on tunnel,surrounding ground and structure 被引量:1
5
作者 Swati Srivastav Sowmiya Chawla Swapnil Mishra 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期179-192,共14页
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ... This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures. 展开更多
关键词 moving train load TUNNELS vibration effect finite element method(FEM) wave propagation
下载PDF
Effect of eccentric and inclined loading on the bearing capacity of strip footing placed on rock mass 被引量:1
6
作者 Shuvankar DAS Debarghya CHAKRABORTY 《Journal of Mountain Science》 SCIE CSCD 2024年第1期292-312,共21页
This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criteri... This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas. 展开更多
关键词 Eccentric and inclined Power cone programming Rock mass Limit analysis Artificial neural network
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas 被引量:1
7
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Characterization and Propagation of Historical and Projected Droughts in the Umatilla River Basin, Oregon, USA 被引量:1
8
作者 Sudip GAUTAM Alok SAMANTARAY +1 位作者 Meghna BABBAR-SEBENS Meenu RAMADAS 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期247-262,I0020-I0028,共25页
Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and... Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses. 展开更多
关键词 Umatilla DROUGHT SPI SPEI SSI SSMI
下载PDF
Multi-scale analysis of carbon mineralization in lime-treated soils considering soil mineralogy 被引量:1
9
作者 Dhanalakshmi Padmaraj Chinchu Cherian Dali Naidu Arnepalli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2296-2309,共14页
Mineral carbonation is emerging as a reliable CO_(2) capture technology that can mitigate climate change.In lime-treated clayey soils,mineral carbonation occurs through the carbonation of free lime and cementitious pr... Mineral carbonation is emerging as a reliable CO_(2) capture technology that can mitigate climate change.In lime-treated clayey soils,mineral carbonation occurs through the carbonation of free lime and cementitious products derived from pozzolanic reactions.The kinetics of the reactions in lime-treated clayey soils are variable and depend primarily on soil mineralogy.The present study demonstrates the role of soil mineralogy in CO_(2) capture and the subsequent changes caused by carbon mineralization in terms of the unconfined compressive strength(UCS)of lime-treated soils during their service life.Three clayey soils(kaolin,bentonite,and silty clay)with different mineralogical characteristics were treated with 4%lime content,and the samples were cured in a controlled environment for 7 d,90 d,180 d,and 365 d.After the specified curing periods,the samples were exposed to CO_(2) in a carbonation cell for 7 d.The non-carbonated samples purged with N2 gas were used as a benchmark to compare the mechanical,chemical-mineralogical,and microstructure changes caused by carbonation reactions.Experimental investigations indicated that exposure to CO_(2) resulted in an average increase of 10%in the UCS of limetreated bentonite,whereas the strength of lime-treated kaolin and silty clay was reduced by an average of 35%.The chemical and microstructural analyses revealed that the precipitated carbonates effectively filled the macropores of the treated bentonite,compared to the inadequate cementation caused by pozzolanic reactions,resulting in strength enhancement.In contrast,strength loss in lime-treated kaolin and silty clay was attributed to the carbonation of cementitious phases and partly to the tensile stress induced by carbonate precipitation.In terms of carbon mineralization prospects,lime-treated kaolin exhibited maximum carbonation due to the higher availability of unreacted lime.The results suggest that,in addition to the increase in compressive strength,adequate calcium-bearing phases and macropores determine the efficiency of carbon mineralization in lime-treated clayey soils. 展开更多
关键词 Clays MINERALOGY Carbon capture LIME STRENGTH Pore structure
下载PDF
Reservoir heterogeneity analysis using multi-directional textural attributes from deep learning-based enhanced acoustic impedance inversion:A study from Poseidon,NW shelf Australia 被引量:1
10
作者 Anjali Dixit Animesh Mandal Shib Sankar Ganguli 《Energy Geoscience》 EI 2024年第2期202-213,共12页
Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t... Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage. 展开更多
关键词 Seismic texture attributes Seismic acoustic impedance Multi-directional texture attributes Reservoir heterogeneity Reservoir characterization Poseidon field
下载PDF
Hydrothermal treatment of pearl millet grains:Effects on nutritional composition,antinutrients and flour properties 被引量:1
11
作者 P.Prashanth T.Jayasree Joshi +1 位作者 Shagolshem Mukta Singh P.Srinivasa Rao 《Grain & Oil Science and Technology》 CAS 2024年第2期87-95,共9页
Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a si... Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a significant challenge due to its high lipid content,enzyme activity,and presence of antinutrients.Consequently,it becomes imperative to enhance the quality and prolong the shelf life of pearl millet flour by employing suitable technologies.Hydrothermal treatment in the food industry has long been seen as promising due to its potential to reduce microbial load,inactivate enzymes,and improve nutrient retention.This study aims to investigate the effects of hydrothermal treatment on the quality characteristics of pearl millet.The independent variables of the study were soaking temperature(35,45,55℃),soaking time(2,3,4 h),and steaming time(5,10,15 min).Treatment conditions had a statistically significant effect on nutrient retention.Major antinutrients like tannins and phytates were reduced by 0.99% to 5.94% and 0.36% to 6.00%,respectively,after the treatment.Lipase activity decreased significantly up to 10% with the treatment conditions.The findings of this study could potentially encourage the use of pearl millet flour in the production of various food items and promote the application of hydrothermal treatment in the field of food processing. 展开更多
关键词 Pearl millet Hydrothermal treatment Nutritional properties ANTINUTRIENTS
下载PDF
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
12
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) Coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
下载PDF
FPGA Accelerators for Computing Interatomic Potential-Based Molecular Dynamics Simulation for Gold Nanoparticles:Exploring Different Communication Protocols
13
作者 Ankitkumar Patel Srivathsan Vasudevan Satya Bulusu 《Computers, Materials & Continua》 SCIE EI 2024年第9期3803-3818,共16页
Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,... Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,despite using an expensive high-end server.Heterogeneous computing,a combination of the Field Programmable Gate Array(FPGA)and a computer,is proposed as a solution to compute MD simulation efficiently.In such heterogeneous computation,communication between FPGA and Computer is necessary.One such MD simulation,explained in the paper,is the(Artificial Neural Network)ANN-based IAP computation of gold(Au_(147)&Au_(309))nanoparticles.MD simulation calculates the forces between atoms and the total energy of the chemical system.This work proposes the novel design and implementation of an ANN IAP-based MD simulation for Au_(147)&Au_(309) using communication protocols,such as Universal Asynchronous Receiver-Transmitter(UART)and Ethernet,for communication between the FPGA and the host computer.To improve the latency of MD simulation through heterogeneous computing,Universal Asynchronous Receiver-Transmitter(UART)and Ethernet communication protocols were explored to conduct MD simulation of 50,000 cycles.In this study,computation times of 17.54 and 18.70 h were achieved with UART and Ethernet,respectively,compared to the conventional server time of 29 h for Au_(147) nanoparticles.The results pave the way for the development of a Lab-on-a-chip application. 展开更多
关键词 Ethernet hardware accelerator heterogeneous computing interatomic potential(IAP) MDsimulation peripheral component interconnect express(PCIe) UART
下载PDF
Discussion on“Dispersion characteristics of clayey soils containing waste rubber particles”[J Rock Mech Geotech Eng 15(2023)3050-3058]
14
作者 Prithvendra Singh Devendra Narain Singh Pintu Kumar Saw 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3864-3865,共2页
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s... We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature. 展开更多
关键词 Waste rubber particles Dispersion characteristics CLAY BENTONITE Scientific literature DISCUSSION
下载PDF
近海三角张力腿平台钢筋束假定失效研究
15
作者 Srinivasan Chandrasekaran Ganta Shanmukha Rao 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期182-200,共19页
Offshore triceratops is one of the successful manifestations of the form-dominant design approaches deployable in ultra-deepwater oil and gas exploration.The deck’s geometric shape and partial isolation from the legs... Offshore triceratops is one of the successful manifestations of the form-dominant design approaches deployable in ultra-deepwater oil and gas exploration.The deck’s geometric shape and partial isolation from the legs counteract lateral loads.Legs are position-restrained to the sea bed by taut-moored tendons,while ball joints partially isolate the deck from the buoyant legs.However,compliance in the horizontal plane imposes large displacements,intuiting the necessity to examine tendon failure.Numerical analysis of triceratops under wave and wind combined action is carried out under the postulated conditions of a tendon failure.10-yr,100-yr,and 1000-yr post-Katrina hurricane conditions are assumed as loading to the platform.Results confirm a marginal increase in the natural periods of stiff degrees of freedom even under postulated failure conditions,ensuring good adaptability to ultra-deep water.Under postulated failure,the tension of adjacent tendons varies significantly,causing a shift to the mean position of the platform.Fatigue life is significantly reduced under the postulated failure of tendons,making the platform free-floating without affecting its stability.Results also show that the pitch response of the deck is a clear manifestation of the postulated failure,which is otherwise absent due to the presence of ball joints.The attempted study deliberates on the fatigue life of tendons,assessing the platform’s suitability to ultra-deep waters and identifying the vulnerable legs for the chosen load combinations. 展开更多
关键词 Ball joints TENDONS Buoyant legs Fatigue life Irregular waves Postulated failure
下载PDF
Assessing the Viability of Gandhar Field in India’s Cambay Basin for CO_(2) Storage
16
作者 Vikram Vishal Somali Roy +1 位作者 Yashvardhan Verma Bharath Shekar 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期529-543,共15页
Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon di... Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon dioxide(CO_(2)) storage through its injection into the siliciclastic reservoirs of Ankleshwar Formation. We aimed to obtain high-resolution acoustic impedance data to estimate porosity employing model-based poststack seismic inversion. We conducted an analysis of the density and effective porosity in the target zone through geostatistical techniques and probabilistic neural networks. Simultaneously, the work also involved geomechanical analysis through the computation of pore pressure and fracture gradient using well-log data, geological information, and drilling events in the Gandhar field. Our investigation unveiled spatial variations in effective porosity within the Hazad Member of the Ankleshwar Formation, with an effective porosity exceeding 25% observed in several areas, which indicates the presence of well-connected pore spaces conducive to efficient CO_(2) migration. Geomechanical analysis showed that the vertical stress(Sv) ranged from 55 MPa to 57 MPa in Telwa and from 63.7 MPa to 67.7 MPa in Hazad Member. The pore pressure profile displayed variations along the stratigraphic sequence, with the shale zone, particularly in the Kanwa Formation, attaining the maximum pressure gradient(approximately 36 MPa). However, consistently low pore pressure values(30-34 MPa) considerably below the fracture gradient curves were observed in Hazad Member due to depletion. The results from our analysis provide valuable insights into shaping future field development strategies and exploration of the feasibility of CO_(2) sequestration in Gandhar Field. 展开更多
关键词 Carbon capture and storage Reservoir characterization Seismic inversion GEOMECHANICS CO_(2)storage CO_(2)enhancing oil recovery
下载PDF
Significance of including lid thickness and particle shape factor in numerical modeling for prediction of particle trap efficiency of invert trap
17
作者 Salman Beg Deo Raj Kaushal 《Water Science and Engineering》 EI CAS CSCD 2024年第2期166-176,共11页
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime... Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%. 展开更多
关键词 Invert trap Lid thickness Particle image velocimetry Particle shape factor Turbulent kinetic energy Scanning electron microscope
下载PDF
Enhanced in-vitro degradation resistance and cytocompatibility of a thermomechanically processed novel Mg alloy:Insights into the role of microstructural attributes
18
作者 Darothi Bairagi Santanu Mandal +2 位作者 Mangal Roy Manas Paliwal Sumantra Mandal 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期700-725,共26页
The role of microstructural features on in-vitro degradation and surface film development of a thermomechanically processed Mg-4Zn-0.5Ca-0.8Mn alloy has been investigated employing electrochemical studies,scanning ele... The role of microstructural features on in-vitro degradation and surface film development of a thermomechanically processed Mg-4Zn-0.5Ca-0.8Mn alloy has been investigated employing electrochemical studies,scanning electron microscopy and X-ray photoelectron spectroscopy.The specimen forged at 523 K temperature developed a coarse unimodal microstructure consisting of basal oriented grains,whereas the specimens forged at 623 K and 723 K temperatures exhibited bimodal microstructures containing randomly oriented fine grains and basal oriented coarse grains.The bimodal microstructures exerted higher resistance to corrosion compared to the unimodal microstructure in presence of a protective surface film.The optimum size distribution of fine and coarse grains as well as the prevalence of basal oriented grains led to the lowest anodic current density in the specimen forged at 623 K.The morphology of Ca_(2)Mg_(6)Zn_(3)precipitates governed the cathodic kinetics by controlling the anode to cathode surface area ratio.Despite the specimen forged at 723 K comprised comparatively lower fraction of precipitates than at 623 K,the mesh-like precipitate morphology increased the effective cathodic surface area,leading to enhanced localised corrosion in the former specimen.Optimal microstructural features developed at 623 K forging temperature formed a well-protective surface film with lower Mg(OH)_(2)to MgO ratio,exhibiting distinctly high polarization resistance and superior cytocompatibility in terms of cell-proliferation and cell-differentiation. 展开更多
关键词 Magnesium alloy Microstructure Corrosion Electrochemical impedance spectroscopy X-ray photoelectron spectroscopy CYTOTOXICITY
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
19
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 Carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Direct scaling of residual displacements for bilinear and pinching oscillators
20
作者 Mohammad Saifullah Vinay K.Gupta 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期129-149,共21页
The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displ... The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displacements plays an important role in ensuring cost-feasible or cost-effective repairs in a damaged structure after the event.An attempt is made in this study to obtain statistical estimates of constant-ductility residual displacement spectra for bilinear and pinching oscillators with 5%initial damping,directly in terms of easily available seismological,site,and model parameters.None of the available models for the bilinear and pinching oscillators are useful when design spectra for a seismic hazard at a site are not available.The statistical estimates of a residual displacement spectrum are proposed in terms of earthquake magnitude,epicentral distance,site geology parameter,and three model parameters for a given set of ductility demand and a hysteretic energy capacity coefficient in the case of bilinear and pinching models,as well as for a given set of pinching parameters for displacement and strength at the breakpoint in the case of pinching model alone.The proposed scaling model is applicable to horizontal ground motions in the western U.S.for earthquake magnitudes less than 7 or epicentral distances greater than 20 km. 展开更多
关键词 residual displacement spectrum bilinear hysteresis model pinching hysteresis model nonlinear analysis scaling model
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部