Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and...Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.展开更多
Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge ...Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated.展开更多
Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviou...Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviour of magnesium-zinc/hydroxyapatite(Mg-Zn/HA)composites fabricated by different powder mixing techniques.A single step mixing process involved mechanical alloying or mechanical milling techniques,while double step processing involved a combination of both mechanical alloying and mechanical milling.Optimum mechanical properties of the composite were observed when the powders were prepared using single step processing via mechanical alloying technique.However,Mg-Zn/HA composite fabricated through single step processing via mechanical milling technique was found to have the most desirable low degradation rate coupled with highest bioactivity.The composite achieved the lowest degradation rate of 0.039×10^−3 mm/year as measured by immersion test and 0.0230 mm/year as measured by electrochemical polarization.Ca:P ratio of the composite also slightly more than enough to aid the initial bone mineralization,that is 1:1.76,as the required Ca:P ratio for initial bone mineralization is between 1:1 and 1:1.67.展开更多
An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 w...An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 wt.% to refine primary Si and Sr was varied from 0.05.0.1 wt.% to modify eutectic Si. The results showed that the average size of primary Si is 24 μm for addition of 4 wt.%γ-Al2O3 to the alloy whereas 0.1 wt.% Sr resulted in sphericity of eutectic Si to ~0.6 and average length of ~1.2 μm. The thermal analysis revealed that γ-Al2O3 can act as potential heterogeneous nucleation sites. Moreover, simultaneous addition of γ-Al2O3 and Sr does not poison γ-Al2O3 particles and inhibit their nucleation efficiency as in the case of combined addition of phosphorous and strontium to Al-20Si alloy. Therefore, it was concluded that enhanced tensile strength, i.e., ultimate tensile strength (increase by 20%) and elongation (increase by 23%) in Al-20Si.4γ-Al2O3.0.1wt.%Sr alloy as compared to as-cast Al.20Si alloy can be attributed to refinement of primary Si, modification of eutectic Si and the presence of α(Al) in the alloy as evident from eutectic shift.展开更多
The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o...The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.展开更多
This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to im...This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to improve the mechanical properties and wear resistance of the RZ5 alloy used in aerospace application by adding TiC particles.The wear test was performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load.The composite was microstructurally characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDS).The results exhibited that the tensile strength and hardness of the RZ5-10wt%TiC composite increased considerably while grain size decreased compare to the unreinforced RZ5 alloy.The SEM based fractography indicated mixed mode(quasi-cleavage and ductile feature)failure of the composite.展开更多
The microstructure and corrosion behavior of as-cast and friction stir processed in-situ Al-TiB2 based composite in 3.5 wt.% sodium chloride solution were investigated. The microstructure was characterized using X-ray...The microstructure and corrosion behavior of as-cast and friction stir processed in-situ Al-TiB2 based composite in 3.5 wt.% sodium chloride solution were investigated. The microstructure was characterized using X-ray diffractometry, scanning electron microscopy and electron backscattered diffraction technique while corrosion behavior was evaluated using linear/cyclic potentiodynamic, electrochemical impedance spectroscopy and ASTM–G67 tests. The composite contains sub-micron TiB2 particles in an aluminum matrix with both blocky and fine clusters of Al3Ti agglomerated around TiB2 and displays a low uniform corrosion rate. It is also resistant to pitting as substantiated by the absence of a positive loop in cyclic potentiodynamic tests. This is due to the non-conductive nature of TiB2 particles and a controlled amount of blocky Al3Ti phase. However, both friction stir processed and as-cast composites are susceptible to inter-granular corrosion where Al3Ti and TiB2 at grain boundaries provide initiation sites for corrosion. Electrochemical impedance study attributes this to the adverse effect of Al3Ti and TiB2 on the protective oxide surface film, which increases with immersion time.展开更多
Temporal evolutions of scour at submerged circular cylinders were investigated.Flow visualization was carried out around the cylinders over plane,under developed and equilibrium scour holes.Video analysis technique wa...Temporal evolutions of scour at submerged circular cylinders were investigated.Flow visualization was carried out around the cylinders over plane,under developed and equilibrium scour holes.Video analysis technique was used to formulate the equations for determining the diameter of the horseshoe vortex around the submerged cylinders,which is also verified from the vector diagrams drawn using the velocity measurements.The scour process similar to live bed scour was noticed around the downstream cylinder.The diameter of the horseshoe vortex is found to depend on the diameter of respective cylinder,submergence ratio,spacing between the cylinders and skew angle.This formulation along with the dislodgement and transportation of a single sediment particle is further incorporated in the proposed model for determining the time variation of scour around the submerged cylinders.It is evident from the results that the upstream cylinder shelters the downstream cylinder and thereby reduces the scour at the downstream cylinder.Proposed model is further extended to incorporate the effect of non-uniformity of the sediment particles on the time variation of scour depth.The results indicate significant reduction of scour depth of around 6%and 35%for upstream and downstream cylinders respectively due to the formation of the armor layer.The model is also compared with the local scour component of field data around cylindrical bridge piers to establish the differences in the scour process around a partially submerged cylinder and fully submerged tandem and skewed cylinders.展开更多
A self-propagating high-temperature synthesis route is adopted for the fabrication of TiB2-reinforced magnesium RZ5 alloy-based in-situ metal matrix composites.Ti-B is used according to the appropriate stoichiometry t...A self-propagating high-temperature synthesis route is adopted for the fabrication of TiB2-reinforced magnesium RZ5 alloy-based in-situ metal matrix composites.Ti-B is used according to the appropriate stoichiometry to obtain 4,6 and 8 wt.%TiB2 reinforcements.The base alloy and cast composites are solutionised to enhance the mechanical properties of the materials.A microstructural study of the composites is carried out using optical microscopy and field emission seanning electron microscopy(FESEM)and revealed near-uniform distribution of TiB2 particles in the magnesium RZ5 alloy matrix.X-ray diffraction revealed the formation of the TiB2 reinforcement along with the transient phase TiB and MgB7.The hardness of the RZ5 alloy-based composites increases by 7.12%,17.06%and 32.07%with the addition of 4,6 and 8 wt.%TiB2 reinforcements,respectively.The ultimate tensile strength of the as-cast composite increases by 30.47%with the addition of 8 wt.%TiB2.The tensile strength and ductility of the materials is improved by using the solutionising heat treatment.The heat-treated composite containing 8 wt.%TiB2 results in an ultimate tensile strength of 178.7 MPa.The tensile fracture surfaces are analysed using FESEM.The wear loss of the materials decreased from 25.826 mm^(3)to 22.949 mm^(3)by the adding 8 wt.%TiB2 for the sliding distance of 2000 m.Micrographs of the worn surfaces obtained from FESEM of both the base alloy and composites are also studied which indicate delamination,wear groove and oxide formation.展开更多
Projected changes in weather parameters, mainly temperature and rainfall, have already started to show their effect on agricultural production. To cope with the changing scenarios, adoption of appropriate management s...Projected changes in weather parameters, mainly temperature and rainfall, have already started to show their effect on agricultural production. To cope with the changing scenarios, adoption of appropriate management strategies is of paramount importance. A study was undertaken to evaluate the most appropriate combination of sowing date and phosphorus fertilization level for peanut crops grown in sandy loam soil in a subhumid region of eastern India. Field experiments were conducted during the summer seasons of 2012 and 2013 on peanut crops at the farm of the Indian Institute of Technology, Kharagpur. The DSSAT v4.5 CROPGRO-Peanut model was used to predict the phenology, growth, and yield of peanut crop under combinations of four sowing dates and four phosphorus fertilization levels. The model was calibrated with a 2012 dataset of growth, phenology, and yield parameters for estimating the genetic coefficients of cultivar TMV-2 and was validated with a 2013 dataset of the same parameters. Simulations of pod yield and other yield parameters using the calibrated model were found to be quite accurate. The model was able to reasonably simulate pod yield and final biomass with low normalized root mean square error (RMSE_n), low absolute root mean square error (RMSE_a) and high coefficient of determination (R^2> 0.7) over a wide range of sowing dates and different phosphorus fertilization levels sensitivity analysis indicated that sowing from the second week of January to the end of February with 30–50 kg P_2O_5 ha^(-1)would give the highest pod yield.展开更多
A high-resolution (10 km × 10 km) multiscale ocean modeling system was developed for short-term (1 - 2 weeks) ocean state hindcasting/forecasting in the Bay of Bengal (BOB) region. This paper is Part I of a two-p...A high-resolution (10 km × 10 km) multiscale ocean modeling system was developed for short-term (1 - 2 weeks) ocean state hindcasting/forecasting in the Bay of Bengal (BOB) region. This paper is Part I of a two-part series of studies. The Regional Ocean Modeling System (ROMS) was implemented and initialized with Levitus 1/4° climatological fields for short-term forecasting. The results from these climatology-based model simulations for three representative months (February, June and October) in three different seasons (winter, summer and autumn) are discussed herein. This high-resolution model implementation simulates most of the observed dominant circulation features. The multiscale features during February include an anticyclonic basin-scalegyre with a strong western boundary current (WBC) in the western basin, the formation of several shallow mesoscale eddies in the head of the Bay and a cyclonic sub-basin-scale Myanmar Gyre in the northeast. During June, no well-defined boundary current is simulated along the Indian coast;instead, alternating cyclonic and anticyclonic eddies appear along the east coast with cross-basin eastward flow to support a deep cyclonic Andaman Gyre. In October, a basin-scale cyclonic gyre with a continuous well-defined East India Coastal Current (EICC), weak inflow from the Malacca Strait to the Andaman Sea and advection of BOB water into the Arabian Sea via the Palk Strait are simulated well by the model. A number of mesoscale eddies appear on the eastern half of the basin during October. Physical pattern of simulated eddies and transports across selected sections are validated against available drifter climatology, ARGO data and previous observations. Application of this system to synoptic short-term predictions for October 2008 will be presented in Part II.展开更多
We have successfully attempted to solve the equations of full-MHD model within the framework of Ψ- ωformulation with an objective to evaluate the performance of a new higher order scheme to predict b...We have successfully attempted to solve the equations of full-MHD model within the framework of Ψ- ωformulation with an objective to evaluate the performance of a new higher order scheme to predict better values of control parameters of the flow. In particular for MHD flows, magnetic field and electrical conductivity are the control parameters. In this work, the results from our efficient high order accurate scheme are compared with the results of second order method and significant discrepancies are noted in separation length, drag coefficient and mean Nusselt number. The governing Navier-Stokes equation is fully nonlinear due to its coupling with Maxwell’s equations. The momentum equation has several highly nonlinear body-force terms due to full-MHD model in cylindrical polar system. Our high accuracy results predict that a relatively lower magnetic field is sufficient to achieve full suppression of boundary layer and this is a favorable result for practical applications. The present computational scheme predicts that a drag-coefficient minimum can be achieved when β=0.4 which is much lower when compared to the value β=1 as given by second order method. For a special value of β=0.65, it is found that the heat transfer rate is independent of electrical conductivity of the fluid. From the numerical values of physical quantities, we establish that the order of accuracy of the computed numerical results is fourth order accurate by using the method of divided differences.展开更多
A high-resolution (10 km × 10 km) multiscale ocean modeling system was developed for the Bay of Bengal (BOB) region for short-term ocean hindcasts/forecasts. A physical validation of this system that was based on...A high-resolution (10 km × 10 km) multiscale ocean modeling system was developed for the Bay of Bengal (BOB) region for short-term ocean hindcasts/forecasts. A physical validation of this system that was based on climatological initialization and short-term simulations was presented in Part I of this series of studies. Realistic structures for prevalent eddies, fronts and gyres were reasonably reproduced and validated for three individual months (February, June and October). In this study, we present an application and synoptic validation of the system for October 2008 in a hindcast mode. The system is based on the Regional Ocean Modeling System (ROMS), which assimilates satellite and in-situ measurements within the background climatology using an objective analysis to produce the synoptic initial condition for the model and/or to produce an estimation of the current ocean state. A meteorological forecast is then input into this synoptic three-dimensional ocean model to produce the ocean hindcast/forecast. The high-density Array for Real-time Geotropic Oceanography (ARGO) observations, and the Tropical Rain Measuring Mission (TRMM) satellite’s microwave imager (TMI) passes during the beginning of the month of October 2008, provided a unique opportunity for the system to assimilate these in-situ observations at initialization. Then, the ARGO and TMI observations during the later part of October 2008 were used for the statistical validation of the system’s fidelity. The validation shows that the hindcast/forecast system can reasonably predict the ocean currents, temperature and salinity. The forecast error increases as the forecast time window increases, although the system has a reasonable predictability for up to seven to ten days. The assimilation of both in-situ ARGO and satellite data at initialization produced better hindcasts/forecasts.展开更多
The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption...The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption of large quantities of construction materials and also increasing environmental pollution.Inverted pavements with the aggregate interlayer(AIL)or stress absorbing membrane interlayer(SAMI)are considered to be one of the alternatives for thick conventional flexible pavements for heavy traffic corridors.The AIL or SAMI is placed between a stiff cement-treated base and asphalt concrete layer to function as crack relief layers.This change in the composition alters the behaviour of inverted pavements compared to the conventional flexible pavements.On the other hand,wide-base tires are being increasingly preferred by trucking industries due to increased fuel economy and cargo capacity.However,the effect of wide-base tires on the performance of inverted pavements is yet to be investigated.In this study,the 3D finite element(FE)models of inverted pavements considering different crack relief layers were developed,and load from dual-wheel and wide-base tires were applied.The stress-strain evolution in the various layers of inverted pavements was investigated and discussed in this study.The results indicated the higher stress and strains due to wide base tires compared to the dual-wheel assembly.Further,pavement with SAMI was found to result in lower stress and strains in the asphalt concrete layer compared to AIL pavements.展开更多
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found...Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach.展开更多
The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soi...The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil.The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile.The p-y curves were obtained for two ground conditions:(a)lateral spreading of liquefied soil,and(b)liquefied soil in level ground.These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries,which are modelled as quay walls.The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier).The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed.Based on the results of these model tests,guidance for the construction of p-y curves for use in engineering practice is also provided.展开更多
All possible arrangements of cycles of three periodic as well as four periodicHerman rings of transcendental meromorphic functions having at least one omitted value aredetermined. It is shown that if p = 3 or 4, then ...All possible arrangements of cycles of three periodic as well as four periodicHerman rings of transcendental meromorphic functions having at least one omitted value aredetermined. It is shown that if p = 3 or 4, then the number of p-cycles of Herman rings isat most one. We have also proved a result about the non-existence of a 3-cycle and a 4-cycleof Herman rings simultaneously. Finally some examples of functions having no Herman ringare discussed.展开更多
We analyse the mixed convection flow in a cavity flow which is driven by buoyancy generated due to a non-uniformly heated top wall which is moving uniformly. A fourth order accurate finite difference scheme is used in...We analyse the mixed convection flow in a cavity flow which is driven by buoyancy generated due to a non-uniformly heated top wall which is moving uniformly. A fourth order accurate finite difference scheme is used in this study and our code is first validated against available data in the literature. The results are obtained for different sets of Reynolds number Re, Prandtl number Pr and Grashof number Gr which are in the ranges 100 - 3000, 0.0152 - 10 and 102 - 106 respectively. Here Gr is related to the Richardson number according to Ri=Gr/Re2. While increasing the Richardson number, the growth of upstream secondary eddy (USE) is observed together with a degradation of downstream secondary eddy (DSE). When mixed convection is dominant, the upstream secondary eddy and the downstream secondary eddy merge to form a large recirculation region. When the effect of Pr is studied in the forced convection regime, Ri<<1, the temperature in the central region of the cavity remains nearly a constant. However, in the mixed convection regime, the temperature in cavity undergoes non-monotonic changes. Finally, using the method of divided differences, it is shown that numerical accuracy of the derived numerical scheme used in this work is four.展开更多
The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach.This research is divided into two modules.The first module focus...The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach.This research is divided into two modules.The first module focuses on the design of a motion controller for the Physik Instrumente(PI)-based Stewart platform.In contrast,the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system.Presently,simple feed-forward neural networks(NN)are used to predict the orientation of the top table of the platform.While training,the x,y,and z coordinates of the three-dimensional(3D)object,extracted from images,are used as the input to the NN.In contrast,the orientation information of the platform(that is,rotation about the x,y,and z-axes)is considered as the output from the network.The orientation information obtained from the network is fed to the inverse kinematics-based motion controller(module 1)to move the platform while tracking the object.After training,the optimised NN is used to track the continuously moving 3D object.The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.展开更多
A combined deep machine learning(DML)and collocation based approach to solve the partial differential equations using artificial neural networks is proposed.The developed method is applied to solve problems governed b...A combined deep machine learning(DML)and collocation based approach to solve the partial differential equations using artificial neural networks is proposed.The developed method is applied to solve problems governed by the Sine–Gordon equation(SGE),the scalar wave equation and elasto-dynamics.Two methods are studied:one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta(RK)time integration.The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples.Based on the results,the relative normalized error was observed to be less than 5%in all cases.展开更多
基金the financial support received from the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA), USA (Grant No.2017-67003-26057) via an interagency partnership between USDA-NIFAthe National Science Foundation (NSF) on the research program Innovations at the Nexus of Food, Energy and Water Systemsfunded by the Ministry of Education, Government of India through the Scheme for Promotion of Academic and Research Collaboration (SPARC) project grant (SPARC/2018-2019/P1080/SL)。
文摘Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.
基金Uchchatar Avishkar Yojna(UAY)(Phase II)project(codeIITBBS_004)Prime M inister’s Research Fellows(PMRF)。
文摘Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated.
基金The authors would like thank to Universiti Sains Malaysia for FRGS Grant No.203/PBAHAN/6071386 and financial scholarship from Ministry of Higher Education of Malaysia.
文摘Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviour of magnesium-zinc/hydroxyapatite(Mg-Zn/HA)composites fabricated by different powder mixing techniques.A single step mixing process involved mechanical alloying or mechanical milling techniques,while double step processing involved a combination of both mechanical alloying and mechanical milling.Optimum mechanical properties of the composite were observed when the powders were prepared using single step processing via mechanical alloying technique.However,Mg-Zn/HA composite fabricated through single step processing via mechanical milling technique was found to have the most desirable low degradation rate coupled with highest bioactivity.The composite achieved the lowest degradation rate of 0.039×10^−3 mm/year as measured by immersion test and 0.0230 mm/year as measured by electrochemical polarization.Ca:P ratio of the composite also slightly more than enough to aid the initial bone mineralization,that is 1:1.76,as the required Ca:P ratio for initial bone mineralization is between 1:1 and 1:1.67.
文摘An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 wt.% to refine primary Si and Sr was varied from 0.05.0.1 wt.% to modify eutectic Si. The results showed that the average size of primary Si is 24 μm for addition of 4 wt.%γ-Al2O3 to the alloy whereas 0.1 wt.% Sr resulted in sphericity of eutectic Si to ~0.6 and average length of ~1.2 μm. The thermal analysis revealed that γ-Al2O3 can act as potential heterogeneous nucleation sites. Moreover, simultaneous addition of γ-Al2O3 and Sr does not poison γ-Al2O3 particles and inhibit their nucleation efficiency as in the case of combined addition of phosphorous and strontium to Al-20Si alloy. Therefore, it was concluded that enhanced tensile strength, i.e., ultimate tensile strength (increase by 20%) and elongation (increase by 23%) in Al-20Si.4γ-Al2O3.0.1wt.%Sr alloy as compared to as-cast Al.20Si alloy can be attributed to refinement of primary Si, modification of eutectic Si and the presence of α(Al) in the alloy as evident from eutectic shift.
基金financial support from the Indian Institute of Technology Bhubaneswar under the SEED project grant for fabricating the "cooling slope casting" experimental setupthe support extended by Central Research Facility (CRF), Indian Institute of Technology Kharagpur, toward the facility for conducting DTA experiments
文摘The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.
文摘This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to improve the mechanical properties and wear resistance of the RZ5 alloy used in aerospace application by adding TiC particles.The wear test was performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load.The composite was microstructurally characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDS).The results exhibited that the tensile strength and hardness of the RZ5-10wt%TiC composite increased considerably while grain size decreased compare to the unreinforced RZ5 alloy.The SEM based fractography indicated mixed mode(quasi-cleavage and ductile feature)failure of the composite.
基金financial support from the Board for Research in Nuclear Sciences (BRNS) (Project number 36(2)/20/02/2014-BRNS/)
文摘The microstructure and corrosion behavior of as-cast and friction stir processed in-situ Al-TiB2 based composite in 3.5 wt.% sodium chloride solution were investigated. The microstructure was characterized using X-ray diffractometry, scanning electron microscopy and electron backscattered diffraction technique while corrosion behavior was evaluated using linear/cyclic potentiodynamic, electrochemical impedance spectroscopy and ASTM–G67 tests. The composite contains sub-micron TiB2 particles in an aluminum matrix with both blocky and fine clusters of Al3Ti agglomerated around TiB2 and displays a low uniform corrosion rate. It is also resistant to pitting as substantiated by the absence of a positive loop in cyclic potentiodynamic tests. This is due to the non-conductive nature of TiB2 particles and a controlled amount of blocky Al3Ti phase. However, both friction stir processed and as-cast composites are susceptible to inter-granular corrosion where Al3Ti and TiB2 at grain boundaries provide initiation sites for corrosion. Electrochemical impedance study attributes this to the adverse effect of Al3Ti and TiB2 on the protective oxide surface film, which increases with immersion time.
基金This study is funded by the Department of Science and Technology,Government of India(Grant No:SR/S3/MERC/0029)。
文摘Temporal evolutions of scour at submerged circular cylinders were investigated.Flow visualization was carried out around the cylinders over plane,under developed and equilibrium scour holes.Video analysis technique was used to formulate the equations for determining the diameter of the horseshoe vortex around the submerged cylinders,which is also verified from the vector diagrams drawn using the velocity measurements.The scour process similar to live bed scour was noticed around the downstream cylinder.The diameter of the horseshoe vortex is found to depend on the diameter of respective cylinder,submergence ratio,spacing between the cylinders and skew angle.This formulation along with the dislodgement and transportation of a single sediment particle is further incorporated in the proposed model for determining the time variation of scour around the submerged cylinders.It is evident from the results that the upstream cylinder shelters the downstream cylinder and thereby reduces the scour at the downstream cylinder.Proposed model is further extended to incorporate the effect of non-uniformity of the sediment particles on the time variation of scour depth.The results indicate significant reduction of scour depth of around 6%and 35%for upstream and downstream cylinders respectively due to the formation of the armor layer.The model is also compared with the local scour component of field data around cylindrical bridge piers to establish the differences in the scour process around a partially submerged cylinder and fully submerged tandem and skewed cylinders.
文摘A self-propagating high-temperature synthesis route is adopted for the fabrication of TiB2-reinforced magnesium RZ5 alloy-based in-situ metal matrix composites.Ti-B is used according to the appropriate stoichiometry to obtain 4,6 and 8 wt.%TiB2 reinforcements.The base alloy and cast composites are solutionised to enhance the mechanical properties of the materials.A microstructural study of the composites is carried out using optical microscopy and field emission seanning electron microscopy(FESEM)and revealed near-uniform distribution of TiB2 particles in the magnesium RZ5 alloy matrix.X-ray diffraction revealed the formation of the TiB2 reinforcement along with the transient phase TiB and MgB7.The hardness of the RZ5 alloy-based composites increases by 7.12%,17.06%and 32.07%with the addition of 4,6 and 8 wt.%TiB2 reinforcements,respectively.The ultimate tensile strength of the as-cast composite increases by 30.47%with the addition of 8 wt.%TiB2.The tensile strength and ductility of the materials is improved by using the solutionising heat treatment.The heat-treated composite containing 8 wt.%TiB2 results in an ultimate tensile strength of 178.7 MPa.The tensile fracture surfaces are analysed using FESEM.The wear loss of the materials decreased from 25.826 mm^(3)to 22.949 mm^(3)by the adding 8 wt.%TiB2 for the sliding distance of 2000 m.Micrographs of the worn surfaces obtained from FESEM of both the base alloy and composites are also studied which indicate delamination,wear groove and oxide formation.
基金The authors are thankful to the Agricultural and Food Engineering Department of the Indian Institute of Technology Kharagpur, India for providing facilities to conduct experiments.The authors acknowledge the India Meteorological Department, India for installing an automatic weather stationat the institute.
文摘Projected changes in weather parameters, mainly temperature and rainfall, have already started to show their effect on agricultural production. To cope with the changing scenarios, adoption of appropriate management strategies is of paramount importance. A study was undertaken to evaluate the most appropriate combination of sowing date and phosphorus fertilization level for peanut crops grown in sandy loam soil in a subhumid region of eastern India. Field experiments were conducted during the summer seasons of 2012 and 2013 on peanut crops at the farm of the Indian Institute of Technology, Kharagpur. The DSSAT v4.5 CROPGRO-Peanut model was used to predict the phenology, growth, and yield of peanut crop under combinations of four sowing dates and four phosphorus fertilization levels. The model was calibrated with a 2012 dataset of growth, phenology, and yield parameters for estimating the genetic coefficients of cultivar TMV-2 and was validated with a 2013 dataset of the same parameters. Simulations of pod yield and other yield parameters using the calibrated model were found to be quite accurate. The model was able to reasonably simulate pod yield and final biomass with low normalized root mean square error (RMSE_n), low absolute root mean square error (RMSE_a) and high coefficient of determination (R^2> 0.7) over a wide range of sowing dates and different phosphorus fertilization levels sensitivity analysis indicated that sowing from the second week of January to the end of February with 30–50 kg P_2O_5 ha^(-1)would give the highest pod yield.
文摘A high-resolution (10 km × 10 km) multiscale ocean modeling system was developed for short-term (1 - 2 weeks) ocean state hindcasting/forecasting in the Bay of Bengal (BOB) region. This paper is Part I of a two-part series of studies. The Regional Ocean Modeling System (ROMS) was implemented and initialized with Levitus 1/4° climatological fields for short-term forecasting. The results from these climatology-based model simulations for three representative months (February, June and October) in three different seasons (winter, summer and autumn) are discussed herein. This high-resolution model implementation simulates most of the observed dominant circulation features. The multiscale features during February include an anticyclonic basin-scalegyre with a strong western boundary current (WBC) in the western basin, the formation of several shallow mesoscale eddies in the head of the Bay and a cyclonic sub-basin-scale Myanmar Gyre in the northeast. During June, no well-defined boundary current is simulated along the Indian coast;instead, alternating cyclonic and anticyclonic eddies appear along the east coast with cross-basin eastward flow to support a deep cyclonic Andaman Gyre. In October, a basin-scale cyclonic gyre with a continuous well-defined East India Coastal Current (EICC), weak inflow from the Malacca Strait to the Andaman Sea and advection of BOB water into the Arabian Sea via the Palk Strait are simulated well by the model. A number of mesoscale eddies appear on the eastern half of the basin during October. Physical pattern of simulated eddies and transports across selected sections are validated against available drifter climatology, ARGO data and previous observations. Application of this system to synoptic short-term predictions for October 2008 will be presented in Part II.
文摘We have successfully attempted to solve the equations of full-MHD model within the framework of Ψ- ωformulation with an objective to evaluate the performance of a new higher order scheme to predict better values of control parameters of the flow. In particular for MHD flows, magnetic field and electrical conductivity are the control parameters. In this work, the results from our efficient high order accurate scheme are compared with the results of second order method and significant discrepancies are noted in separation length, drag coefficient and mean Nusselt number. The governing Navier-Stokes equation is fully nonlinear due to its coupling with Maxwell’s equations. The momentum equation has several highly nonlinear body-force terms due to full-MHD model in cylindrical polar system. Our high accuracy results predict that a relatively lower magnetic field is sufficient to achieve full suppression of boundary layer and this is a favorable result for practical applications. The present computational scheme predicts that a drag-coefficient minimum can be achieved when β=0.4 which is much lower when compared to the value β=1 as given by second order method. For a special value of β=0.65, it is found that the heat transfer rate is independent of electrical conductivity of the fluid. From the numerical values of physical quantities, we establish that the order of accuracy of the computed numerical results is fourth order accurate by using the method of divided differences.
文摘A high-resolution (10 km × 10 km) multiscale ocean modeling system was developed for the Bay of Bengal (BOB) region for short-term ocean hindcasts/forecasts. A physical validation of this system that was based on climatological initialization and short-term simulations was presented in Part I of this series of studies. Realistic structures for prevalent eddies, fronts and gyres were reasonably reproduced and validated for three individual months (February, June and October). In this study, we present an application and synoptic validation of the system for October 2008 in a hindcast mode. The system is based on the Regional Ocean Modeling System (ROMS), which assimilates satellite and in-situ measurements within the background climatology using an objective analysis to produce the synoptic initial condition for the model and/or to produce an estimation of the current ocean state. A meteorological forecast is then input into this synoptic three-dimensional ocean model to produce the ocean hindcast/forecast. The high-density Array for Real-time Geotropic Oceanography (ARGO) observations, and the Tropical Rain Measuring Mission (TRMM) satellite’s microwave imager (TMI) passes during the beginning of the month of October 2008, provided a unique opportunity for the system to assimilate these in-situ observations at initialization. Then, the ARGO and TMI observations during the later part of October 2008 were used for the statistical validation of the system’s fidelity. The validation shows that the hindcast/forecast system can reasonably predict the ocean currents, temperature and salinity. The forecast error increases as the forecast time window increases, although the system has a reasonable predictability for up to seven to ten days. The assimilation of both in-situ ARGO and satellite data at initialization produced better hindcasts/forecasts.
文摘The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption of large quantities of construction materials and also increasing environmental pollution.Inverted pavements with the aggregate interlayer(AIL)or stress absorbing membrane interlayer(SAMI)are considered to be one of the alternatives for thick conventional flexible pavements for heavy traffic corridors.The AIL or SAMI is placed between a stiff cement-treated base and asphalt concrete layer to function as crack relief layers.This change in the composition alters the behaviour of inverted pavements compared to the conventional flexible pavements.On the other hand,wide-base tires are being increasingly preferred by trucking industries due to increased fuel economy and cargo capacity.However,the effect of wide-base tires on the performance of inverted pavements is yet to be investigated.In this study,the 3D finite element(FE)models of inverted pavements considering different crack relief layers were developed,and load from dual-wheel and wide-base tires were applied.The stress-strain evolution in the various layers of inverted pavements was investigated and discussed in this study.The results indicated the higher stress and strains due to wide base tires compared to the dual-wheel assembly.Further,pavement with SAMI was found to result in lower stress and strains in the asphalt concrete layer compared to AIL pavements.
基金The Ministry of Education,Government of India,for the financial assistance provided during the research work。
文摘Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach.
文摘The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction)for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil.The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile.The p-y curves were obtained for two ground conditions:(a)lateral spreading of liquefied soil,and(b)liquefied soil in level ground.These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries,which are modelled as quay walls.The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier).The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed.Based on the results of these model tests,guidance for the construction of p-y curves for use in engineering practice is also provided.
基金supported by CSIRDepartment of Science and Technology,Goverment of India through a Fast Track Project(SR-FTP-MS019-2011)respectively
文摘All possible arrangements of cycles of three periodic as well as four periodicHerman rings of transcendental meromorphic functions having at least one omitted value aredetermined. It is shown that if p = 3 or 4, then the number of p-cycles of Herman rings isat most one. We have also proved a result about the non-existence of a 3-cycle and a 4-cycleof Herman rings simultaneously. Finally some examples of functions having no Herman ringare discussed.
文摘We analyse the mixed convection flow in a cavity flow which is driven by buoyancy generated due to a non-uniformly heated top wall which is moving uniformly. A fourth order accurate finite difference scheme is used in this study and our code is first validated against available data in the literature. The results are obtained for different sets of Reynolds number Re, Prandtl number Pr and Grashof number Gr which are in the ranges 100 - 3000, 0.0152 - 10 and 102 - 106 respectively. Here Gr is related to the Richardson number according to Ri=Gr/Re2. While increasing the Richardson number, the growth of upstream secondary eddy (USE) is observed together with a degradation of downstream secondary eddy (DSE). When mixed convection is dominant, the upstream secondary eddy and the downstream secondary eddy merge to form a large recirculation region. When the effect of Pr is studied in the forced convection regime, Ri<<1, the temperature in the central region of the cavity remains nearly a constant. However, in the mixed convection regime, the temperature in cavity undergoes non-monotonic changes. Finally, using the method of divided differences, it is shown that numerical accuracy of the derived numerical scheme used in this work is four.
文摘The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach.This research is divided into two modules.The first module focuses on the design of a motion controller for the Physik Instrumente(PI)-based Stewart platform.In contrast,the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system.Presently,simple feed-forward neural networks(NN)are used to predict the orientation of the top table of the platform.While training,the x,y,and z coordinates of the three-dimensional(3D)object,extracted from images,are used as the input to the NN.In contrast,the orientation information of the platform(that is,rotation about the x,y,and z-axes)is considered as the output from the network.The orientation information obtained from the network is fed to the inverse kinematics-based motion controller(module 1)to move the platform while tracking the object.After training,the optimised NN is used to track the continuously moving 3D object.The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.
基金the funds from the Department of Science and Technology(DST),Science and Engineering Research Board(SERB),India(No.SRG/2019/001581).
文摘A combined deep machine learning(DML)and collocation based approach to solve the partial differential equations using artificial neural networks is proposed.The developed method is applied to solve problems governed by the Sine–Gordon equation(SGE),the scalar wave equation and elasto-dynamics.Two methods are studied:one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta(RK)time integration.The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples.Based on the results,the relative normalized error was observed to be less than 5%in all cases.