With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has becomea core key technology in network supervision. In recent years, many different solutions have emerged...With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has becomea core key technology in network supervision. In recent years, many different solutions have emerged in this field.Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-levelfeatures of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites,temporal features can exhibit significant variations due to changes in communication links and transmissionquality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.Faced with these challenges, identifying encrypted traffic solely based on packet byte-level features is significantlydifficult. To address this, we propose a universal packet-level encrypted traffic identification method, ComboPacket. This method utilizes convolutional neural networks to extract deep features of the current packet andits contextual information and employs spatial and channel attention mechanisms to select and locate effectivefeatures. Experimental data shows that Combo Packet can effectively distinguish between encrypted traffic servicecategories (e.g., File Transfer Protocol, FTP, and Peer-to-Peer, P2P) and encrypted traffic application categories (e.g.,BitTorrent and Skype). Validated on the ISCX VPN-non VPN dataset, it achieves classification accuracies of 97.0%and 97.1% for service and application categories, respectively. It also provides shorter training times and higherrecognition speeds. The performance and recognition capabilities of Combo Packet are significantly superior tothe existing classification methods mentioned.展开更多
Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversio...Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.展开更多
With the rapid advancement of digital and information technology,global positioning system(GPS)technology has seen increasing utilization in surveying and mapping engineering,extending its application across land,ocea...With the rapid advancement of digital and information technology,global positioning system(GPS)technology has seen increasing utilization in surveying and mapping engineering,extending its application across land,ocean,and various other domains.By analyzing the technical means of GPS in surveying and mapping engineering,understanding the characteristics and key technologies in different application environments,and exploring the application process and key technical means,accurate control can be effectively realized.Based on this,this paper mainly analyzes the specific application of GPS technology in surveying and mapping engineering technology for reference.展开更多
To solve the problem of chaining distributed geographic information Web services (GI Web services), this paper provides an ontology-based method. With this method, semantic service description can be achieved by sem...To solve the problem of chaining distributed geographic information Web services (GI Web services), this paper provides an ontology-based method. With this method, semantic service description can be achieved by semantic annotation of the elements in a Web service description language(WSDL) document with concepts of geographic ontology, and then a common under-standing about service semantics between customers and providers of Web services is built. Based on the decomposition and formalization of customer requirements, the discovery, composition and execution of GI Web services are explained in detail, and then a chaining of GI Web services is built and used to achieve the customer's requirement. Finally, an example based on Web ontology language for service (OWL-S) is provided for testing the feasibility of this method.展开更多
Segment Routing(SR)is a new routing paradigm based on source routing and provide traffic engineering(TE)capabilities in IP network.By extending interior gateway protocol(IGP),SR can be easily applied to IP network.How...Segment Routing(SR)is a new routing paradigm based on source routing and provide traffic engineering(TE)capabilities in IP network.By extending interior gateway protocol(IGP),SR can be easily applied to IP network.However,upgrading current IP network to a full SR one can be costly and difficult.Hybrid IP/SR network will last for some time.Aiming at the low flexibility problem of static TE policies in the current SR networks,this paper proposes a Deep Reinforcement Learning(DRL)based TE scheme.The proposed scheme employs multi-path transmission and use DRL to dynamically adjust the traffic splitting ratio among different paths based on the network traffic distribution.As a result,the network congestion can be mitigated and the performance of the network is improved.Simulation results show that our proposed scheme can improve the throughput of the network by up to 9%than existing schemes.展开更多
In order to improve the efficiency and success rate of the side channel attack,the utility of side channel information of the attack object must be analyzed and evaluated before the attack implementation.Based on the ...In order to improve the efficiency and success rate of the side channel attack,the utility of side channel information of the attack object must be analyzed and evaluated before the attack implementation.Based on the study of side-channel attack techniques,a method is proposed in this paper to analyze and evaluate the utility of side channel information and the evaluation indexes of comentropy,Signal-to-Noise Ratio(SNR)are introduced.On this basis,the side channel information(power and electromagnetic)of a side channel attack experiment board is analyzed and evaluated,and the Data Encryption Standard(DES)cipher algorithm is attacked with the differential power attack method and differential electromagnetic attack method.The attack results show the effectiveness of the analysis and evaluation method proposed in this paper.展开更多
In the field of information security,a gap exists in the study of coreference resolution of entities.A hybrid method is proposed to solve the problem of coreference resolution in information security.The work consists...In the field of information security,a gap exists in the study of coreference resolution of entities.A hybrid method is proposed to solve the problem of coreference resolution in information security.The work consists of two parts:the first extracts all candidates(including noun phrases,pronouns,entities,and nested phrases)from a given document and classifies them;the second is coreference resolution of the selected candidates.In the first part,a method combining rules with a deep learning model(Dictionary BiLSTM-Attention-CRF,or DBAC)is proposed to extract all candidates in the text and classify them.In the DBAC model,the domain dictionary matching mechanism is introduced,and new features of words and their contexts are obtained according to the domain dictionary.In this way,full use can be made of the entities and entity-type information contained in the domain dictionary,which can help solve the recognition problem of both rare and long entities.In the second part,candidates are divided into pronoun candidates and noun phrase candidates according to the part of speech,and the coreference resolution of pronoun candidates is solved by making rules and coreference resolution of noun phrase candidates by machine learning.Finally,a dataset is created with which to evaluate our methods using information security data.The experimental results show that the proposed model exhibits better performance than the other baseline models.展开更多
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i...The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.展开更多
Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic h...Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic hierarchy process(AHP) is used to establish the preliminary library of performance indicators for teachers,and the correlation among all the performance indicators is inspected by using data mining method at this time.On this basis,a more objective,comprehensive and scientific performance appraisal system is constructed through principal components analysis(PCA),which is more suitable for university itself.Finally,in order to solve the problems existed in current performance appraisal system,a dynamic evaluation model is put forward by regulating the weight of indicator according to the historical data,highlighting the continuity of the system.展开更多
In a recent paper, Sacchi (Phys. Rev. Lett. 96 (2006) 220502) studied the information-disturbance tradeoff in estimating an unknown two-qubit maximally entangled state. In this study, we explore the tradeoff in es...In a recent paper, Sacchi (Phys. Rev. Lett. 96 (2006) 220502) studied the information-disturbance tradeoff in estimating an unknown two-qubit maximally entangled state. In this study, we explore the tradeoff in estimating 13 an unknown three-qubit GHZ state. The optimal estimation process supplies a fidelity of 13/54 and the tradeoff interpolates smoothly between non-informative measurement and optimal estimation process.展开更多
With the expanding enrollments in higher education,the quality of col-lege education and the learning gains of students have attracted much attention.It is important to study the influencing factors and mechanisms of ...With the expanding enrollments in higher education,the quality of col-lege education and the learning gains of students have attracted much attention.It is important to study the influencing factors and mechanisms of individual stu-dents’acquisition of learning gains to improve the quality of talent cultivation in colleges.However,in the context of information security,the original data of learning situation surveys in various universities involve the security of educa-tional evaluation data and daily privacy of teachers and students.To protect the original data,data feature mining and correlation analyses were performed at the model level.This study selected 12,181 pieces of data from X University,which participated in the Chinese College Student Survey(CCSS)from 2018 to 2021.A confirmatory factor analysis was conducted and a structural equation modeling was conducted using AMOS 24.0.Through hypothesis testing,this study explored the mechanisms that influence learning gains from the per-spectives of student involvement,teacher involvement,and school support.The results indicated that the quality of student involvement has an important mediat-ing effect on learning gains and that a supportive campus environment has the greatest influence on learning gains.Establishing positive emotional communica-tions between teachers and students is a more direct and effective method than improving the teaching level to improve the quality of student involvement.This study discusses the implications of these results on the research and practice of connotative development in higher education.展开更多
<div style="text-align:justify;"> In the era of information and communication technology (ICT) and big data, the map gradually shows a new qualitative feature of “spatiotemporal ubiquitous” due to th...<div style="text-align:justify;"> In the era of information and communication technology (ICT) and big data, the map gradually shows a new qualitative feature of “spatiotemporal ubiquitous” due to the extension of its object space and the geographic information it contains, which brings new challenges to map information organization. This paper analyzes the concept and information characteristics of the ubiquitous map. Based on that, it proposes a ubiquitous map information organization model oriented to location-based aggregation. This new model includes three parts as “ubiquitous map instance”, “location-based aggregation mode” and “map scene”. This paper focuses on the “map scene” part which is the core of the model and contains two mutually mapped aspects as “content scene” and “representation scene”. And both aspects are divided into three levels as “features” ←→ “elements” ←→ “scenes” according to ubiquitous map information characteristics and location-based aggregation mode. With cases of map decomposition, the application of the model is explained to illustrate its effectiveness. The model is expected to provide powerful data organization and management capabilities for ubiquitous map production and use. </div>展开更多
View synthesis is an important building block in three dimension(3D) video processing and communications.Based on one or several views,view synthesis creates other views for the purpose of view prediction(for compr...View synthesis is an important building block in three dimension(3D) video processing and communications.Based on one or several views,view synthesis creates other views for the purpose of view prediction(for compression) or view rendering(for multiview-display).The quality of view synthesis depends on how one fills the occlusion area as well as how the pixels are created.Consequently,luminance adjustment and hole filling are two key issues in view synthesis.In this paper,two views are used to produce an arbitrary virtual synthesized view.One view is merged into another view using a local luminance adjustment method,based on local neighborhood region for the calculation of adjustment coefficient.Moreover,a maximum neighborhood spreading strength hole filling method is presented to deal with the micro texture structure when the hole is being filled.For each pixel at the hole boundary,its neighborhood pixels with the maximum spreading strength direction are selected as candidates;and among them,the pixel with the maximum spreading strength is used to fill the hole from boundary to center.If there still exist disocclusion pixels after once scan,the filling process is repeated until all hole pixels are filled.Simulation results show that the proposed method is efficient,robust and achieves high performance in subjection and objection.展开更多
The advantage of the network laboratory is the better flexibility of lab experiments by allowing remote control from different locations at a freely chosen time. In engineering education, the work should not only be f...The advantage of the network laboratory is the better flexibility of lab experiments by allowing remote control from different locations at a freely chosen time. In engineering education, the work should not only be focused on the technical realization of virtual or remote access experiments, but also on the achievement of its pedagogical goals. In this paper, an interactive laboratory is introduced which is based on the online tutoring system, virtual and remote access experiments. It has been piloted in the Department of Electronic Science and Technology, HUST. Some pedagogical issues for electronic engineering laboratory design, the development of a multi-serverbased distributed architecture for the reduction of network latency and implementations of the function module are presented. Finally, the system is proved valid by an experiment.展开更多
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ...Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.展开更多
This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the at...This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.展开更多
The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been p...The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.展开更多
Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representation...Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.展开更多
Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on de...Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on deep neural network(DNN)can performfeature engineering and attain accuracy rates of over 98%,research has demonstrated thatDNNis vulnerable to adversarial samples.As a result,many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success.However,these methods suffer from high bandwidth overhead or require access to the target model,which is unrealistic.This paper proposes CMAES-WFD,a black-box WF defense based on adversarial samples.The process of generating adversarial examples is transformed into a constrained optimization problem solved by utilizing the Covariance Matrix Adaptation Evolution Strategy(CMAES)optimization algorithm.Perturbations are injected into the local parts of the original traffic to control bandwidth overhead.According to the experiment results,CMAES-WFD was able to significantly decrease the accuracy of Deep Fingerprinting(DF)and VarCnn to below 8.3%and the bandwidth overhead to a maximum of only 14.6%and 20.5%,respectively.Specially,for Automated Website Fingerprinting(AWF)with simple structure,CMAES-WFD reduced the classification accuracy to only 6.7%and the bandwidth overhead to less than 7.4%.Moreover,it was demonstrated that CMAES-WFD was robust against adversarial training to a certain extent.展开更多
基金the National Natural Science Foundation of China Youth Project(62302520).
文摘With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has becomea core key technology in network supervision. In recent years, many different solutions have emerged in this field.Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-levelfeatures of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites,temporal features can exhibit significant variations due to changes in communication links and transmissionquality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.Faced with these challenges, identifying encrypted traffic solely based on packet byte-level features is significantlydifficult. To address this, we propose a universal packet-level encrypted traffic identification method, ComboPacket. This method utilizes convolutional neural networks to extract deep features of the current packet andits contextual information and employs spatial and channel attention mechanisms to select and locate effectivefeatures. Experimental data shows that Combo Packet can effectively distinguish between encrypted traffic servicecategories (e.g., File Transfer Protocol, FTP, and Peer-to-Peer, P2P) and encrypted traffic application categories (e.g.,BitTorrent and Skype). Validated on the ISCX VPN-non VPN dataset, it achieves classification accuracies of 97.0%and 97.1% for service and application categories, respectively. It also provides shorter training times and higherrecognition speeds. The performance and recognition capabilities of Combo Packet are significantly superior tothe existing classification methods mentioned.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605249)the Science and Technology Key Project of Henan Province of China(Grant Nos.182102210577 and 232102211086).
文摘Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.
文摘With the rapid advancement of digital and information technology,global positioning system(GPS)technology has seen increasing utilization in surveying and mapping engineering,extending its application across land,ocean,and various other domains.By analyzing the technical means of GPS in surveying and mapping engineering,understanding the characteristics and key technologies in different application environments,and exploring the application process and key technical means,accurate control can be effectively realized.Based on this,this paper mainly analyzes the specific application of GPS technology in surveying and mapping engineering technology for reference.
基金the National Natural Science Fundation ofChina (60774041)
文摘To solve the problem of chaining distributed geographic information Web services (GI Web services), this paper provides an ontology-based method. With this method, semantic service description can be achieved by semantic annotation of the elements in a Web service description language(WSDL) document with concepts of geographic ontology, and then a common under-standing about service semantics between customers and providers of Web services is built. Based on the decomposition and formalization of customer requirements, the discovery, composition and execution of GI Web services are explained in detail, and then a chaining of GI Web services is built and used to achieve the customer's requirement. Finally, an example based on Web ontology language for service (OWL-S) is provided for testing the feasibility of this method.
基金supported by the National Key R&D Project(No.2020YFB1804803)the Research and Development Program in Key Areas of Guangdong Province(No.2018B010113001)。
文摘Segment Routing(SR)is a new routing paradigm based on source routing and provide traffic engineering(TE)capabilities in IP network.By extending interior gateway protocol(IGP),SR can be easily applied to IP network.However,upgrading current IP network to a full SR one can be costly and difficult.Hybrid IP/SR network will last for some time.Aiming at the low flexibility problem of static TE policies in the current SR networks,this paper proposes a Deep Reinforcement Learning(DRL)based TE scheme.The proposed scheme employs multi-path transmission and use DRL to dynamically adjust the traffic splitting ratio among different paths based on the network traffic distribution.As a result,the network congestion can be mitigated and the performance of the network is improved.Simulation results show that our proposed scheme can improve the throughput of the network by up to 9%than existing schemes.
文摘In order to improve the efficiency and success rate of the side channel attack,the utility of side channel information of the attack object must be analyzed and evaluated before the attack implementation.Based on the study of side-channel attack techniques,a method is proposed in this paper to analyze and evaluate the utility of side channel information and the evaluation indexes of comentropy,Signal-to-Noise Ratio(SNR)are introduced.On this basis,the side channel information(power and electromagnetic)of a side channel attack experiment board is analyzed and evaluated,and the Data Encryption Standard(DES)cipher algorithm is attacked with the differential power attack method and differential electromagnetic attack method.The attack results show the effectiveness of the analysis and evaluation method proposed in this paper.
基金This work was supported by the National Natural Science Foundation of China(grant no.61602515).
文摘In the field of information security,a gap exists in the study of coreference resolution of entities.A hybrid method is proposed to solve the problem of coreference resolution in information security.The work consists of two parts:the first extracts all candidates(including noun phrases,pronouns,entities,and nested phrases)from a given document and classifies them;the second is coreference resolution of the selected candidates.In the first part,a method combining rules with a deep learning model(Dictionary BiLSTM-Attention-CRF,or DBAC)is proposed to extract all candidates in the text and classify them.In the DBAC model,the domain dictionary matching mechanism is introduced,and new features of words and their contexts are obtained according to the domain dictionary.In this way,full use can be made of the entities and entity-type information contained in the domain dictionary,which can help solve the recognition problem of both rare and long entities.In the second part,candidates are divided into pronoun candidates and noun phrase candidates according to the part of speech,and the coreference resolution of pronoun candidates is solved by making rules and coreference resolution of noun phrase candidates by machine learning.Finally,a dataset is created with which to evaluate our methods using information security data.The experimental results show that the proposed model exhibits better performance than the other baseline models.
基金Projects(41604117,41204054)supported by the National Natural Science Foundation of ChinaProjects(20110490149,2015M580700)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2015zzts064)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16B147)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.
基金985 Construction Projects of Tongji,China(No.4218142801)
文摘Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic hierarchy process(AHP) is used to establish the preliminary library of performance indicators for teachers,and the correlation among all the performance indicators is inspected by using data mining method at this time.On this basis,a more objective,comprehensive and scientific performance appraisal system is constructed through principal components analysis(PCA),which is more suitable for university itself.Finally,in order to solve the problems existed in current performance appraisal system,a dynamic evaluation model is put forward by regulating the weight of indicator according to the historical data,highlighting the continuity of the system.
基金Supported by the National Basic Research Programme of China, the National Natural Science Foundation of China under Grant Nos 10674128 and 60121503, the Knowledge Innovation Project and the Hundreds of Talents Programme of Chinese Academy of Sciences, and the Doctoral Foundation of the Education Ministry of China under Grant No 20060358043.
文摘In a recent paper, Sacchi (Phys. Rev. Lett. 96 (2006) 220502) studied the information-disturbance tradeoff in estimating an unknown two-qubit maximally entangled state. In this study, we explore the tradeoff in estimating 13 an unknown three-qubit GHZ state. The optimal estimation process supplies a fidelity of 13/54 and the tradeoff interpolates smoothly between non-informative measurement and optimal estimation process.
基金This work was supported by the Education Department of Henan,China.The fund was obtained from the general project of the 14th Plan of Education Science of Henan Province in 2021(No.2021YB0037).
文摘With the expanding enrollments in higher education,the quality of col-lege education and the learning gains of students have attracted much attention.It is important to study the influencing factors and mechanisms of individual stu-dents’acquisition of learning gains to improve the quality of talent cultivation in colleges.However,in the context of information security,the original data of learning situation surveys in various universities involve the security of educa-tional evaluation data and daily privacy of teachers and students.To protect the original data,data feature mining and correlation analyses were performed at the model level.This study selected 12,181 pieces of data from X University,which participated in the Chinese College Student Survey(CCSS)from 2018 to 2021.A confirmatory factor analysis was conducted and a structural equation modeling was conducted using AMOS 24.0.Through hypothesis testing,this study explored the mechanisms that influence learning gains from the per-spectives of student involvement,teacher involvement,and school support.The results indicated that the quality of student involvement has an important mediat-ing effect on learning gains and that a supportive campus environment has the greatest influence on learning gains.Establishing positive emotional communica-tions between teachers and students is a more direct and effective method than improving the teaching level to improve the quality of student involvement.This study discusses the implications of these results on the research and practice of connotative development in higher education.
文摘<div style="text-align:justify;"> In the era of information and communication technology (ICT) and big data, the map gradually shows a new qualitative feature of “spatiotemporal ubiquitous” due to the extension of its object space and the geographic information it contains, which brings new challenges to map information organization. This paper analyzes the concept and information characteristics of the ubiquitous map. Based on that, it proposes a ubiquitous map information organization model oriented to location-based aggregation. This new model includes three parts as “ubiquitous map instance”, “location-based aggregation mode” and “map scene”. This paper focuses on the “map scene” part which is the core of the model and contains two mutually mapped aspects as “content scene” and “representation scene”. And both aspects are divided into three levels as “features” ←→ “elements” ←→ “scenes” according to ubiquitous map information characteristics and location-based aggregation mode. With cases of map decomposition, the application of the model is explained to illustrate its effectiveness. The model is expected to provide powerful data organization and management capabilities for ubiquitous map production and use. </div>
基金supported by the National Natural Science Foundation of China(61075013)
文摘View synthesis is an important building block in three dimension(3D) video processing and communications.Based on one or several views,view synthesis creates other views for the purpose of view prediction(for compression) or view rendering(for multiview-display).The quality of view synthesis depends on how one fills the occlusion area as well as how the pixels are created.Consequently,luminance adjustment and hole filling are two key issues in view synthesis.In this paper,two views are used to produce an arbitrary virtual synthesized view.One view is merged into another view using a local luminance adjustment method,based on local neighborhood region for the calculation of adjustment coefficient.Moreover,a maximum neighborhood spreading strength hole filling method is presented to deal with the micro texture structure when the hole is being filled.For each pixel at the hole boundary,its neighborhood pixels with the maximum spreading strength direction are selected as candidates;and among them,the pixel with the maximum spreading strength is used to fill the hole from boundary to center.If there still exist disocclusion pixels after once scan,the filling process is repeated until all hole pixels are filled.Simulation results show that the proposed method is efficient,robust and achieves high performance in subjection and objection.
基金This was work supported by the Program for New Century Excellent Talents inUniversity under Grand No. NCET-04-0702.
文摘The advantage of the network laboratory is the better flexibility of lab experiments by allowing remote control from different locations at a freely chosen time. In engineering education, the work should not only be focused on the technical realization of virtual or remote access experiments, but also on the achievement of its pedagogical goals. In this paper, an interactive laboratory is introduced which is based on the online tutoring system, virtual and remote access experiments. It has been piloted in the Department of Electronic Science and Technology, HUST. Some pedagogical issues for electronic engineering laboratory design, the development of a multi-serverbased distributed architecture for the reduction of network latency and implementations of the function module are presented. Finally, the system is proved valid by an experiment.
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61521003the National Natural Science Foundation of China under Grant No.62072467 and 62002383.
文摘Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.
基金the National Natural Science Foundation of China(Grant No.42174047 and No.42174036)the National Science Foundation Project for Outstanding Youth(No.42104034).
文摘This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.
基金supported by the National Key Research and Development Program of China(2022YFB2901403)the Songshan Laboratory Project(221100210900-02).
文摘The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.
基金funded by the Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.
基金the Key JCJQ Program of China:2020-JCJQ-ZD-021-00 and 2020-JCJQ-ZD-024-12.
文摘Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on deep neural network(DNN)can performfeature engineering and attain accuracy rates of over 98%,research has demonstrated thatDNNis vulnerable to adversarial samples.As a result,many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success.However,these methods suffer from high bandwidth overhead or require access to the target model,which is unrealistic.This paper proposes CMAES-WFD,a black-box WF defense based on adversarial samples.The process of generating adversarial examples is transformed into a constrained optimization problem solved by utilizing the Covariance Matrix Adaptation Evolution Strategy(CMAES)optimization algorithm.Perturbations are injected into the local parts of the original traffic to control bandwidth overhead.According to the experiment results,CMAES-WFD was able to significantly decrease the accuracy of Deep Fingerprinting(DF)and VarCnn to below 8.3%and the bandwidth overhead to a maximum of only 14.6%and 20.5%,respectively.Specially,for Automated Website Fingerprinting(AWF)with simple structure,CMAES-WFD reduced the classification accuracy to only 6.7%and the bandwidth overhead to less than 7.4%.Moreover,it was demonstrated that CMAES-WFD was robust against adversarial training to a certain extent.