期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhanced structural stability and durability in lithium-rich manganese-based oxide via surface double-coupling engineering
1
作者 Jiayu Zhao Yuefeng Su +10 位作者 Jinyang Dong Xi Wang Yun Lu Ning Li Qing Huang Jianan Hao Yujia Wu Bin Zhang Qiongqiong Qi Feng Wu Lai Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期274-283,共10页
Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes of... Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability. 展开更多
关键词 Lithium-ion battery Layered lithium-rich cathode Surface double-coupling engineering Lattice strain Oxygen release
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部