A semi-analytical approach for the pulsating solutions of the 3D complex Cubic-quintic Ginzburg-Landau Equation (CGLE) is presented in this article. A collective variable approach is used to obtain a system of variati...A semi-analytical approach for the pulsating solutions of the 3D complex Cubic-quintic Ginzburg-Landau Equation (CGLE) is presented in this article. A collective variable approach is used to obtain a system of variational equations which give the evolution of the light pulses parameters as a function of the propagation distance. The collective coordinate approach is incomparably faster than the direct numerical simulation of the propagation equation. This allows us to obtain, efficiently, a global mapping of the 3D pulsating soliton. In addition it allows describing the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics.展开更多
This paper presents a robust sixth-order Discrete-time Extended Sliding Mode Observer (DESMO) for sensorless control of PMSM in order to estimate the currents, speed, rotor position, load torque and stator resistance....This paper presents a robust sixth-order Discrete-time Extended Sliding Mode Observer (DESMO) for sensorless control of PMSM in order to estimate the currents, speed, rotor position, load torque and stator resistance. The satisfying simulation results on Simulink/Matlab environment for a 1.6 kW PMSM demonstrate the good performance and stability of the proposed ESMO algorithm against parameter variation, modeling uncertainty, measurement and system noises.展开更多
The solution we propose optimizes the energy inside the wireless sensor network (WSN) with higher performance. The WSN is composed of many sensors nodes which collect the information, treat that information then send ...The solution we propose optimizes the energy inside the wireless sensor network (WSN) with higher performance. The WSN is composed of many sensors nodes which collect the information, treat that information then send it to the base station. The information is received by the base station (BS) then data?are?sent to the users by that BS. The most important element in sensor node is energy, as the lifetime of wireless sensor network depends on the sensor node energy. So many researches had been made in order to improve this energy basing routing protocols. As a result, we are able to propose a solution that optimizes this energy. In this paper, we are presenting a new approach of selecting node sensor base on routing protocol and process to send data to the base station. This ameliorates wireless sensor network lifetime and increases?the transmission sensor node to base station.展开更多
Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated thro...Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.展开更多
In this paper, we are presenting a new vector order, a solution to the open problem of the generalization of mathematical morphology to multicomponent images and multidimensional data. This approach uses the paradigm ...In this paper, we are presenting a new vector order, a solution to the open problem of the generalization of mathematical morphology to multicomponent images and multidimensional data. This approach uses the paradigm of P–order. Its primary principle consists, first in partitioning the multi-component image in the attribute space by a classification method in different numbers of classes, and then the vector attributes are ordered within each class (intra-order-class). And finally the classes themselves are ordered in turn from their barycenter (inter-class order). Thus, two attribute vectors (or colors) whatever, belonging to the vector image can be compared. Provided with this relation of order, vectors attributes of a multivariate image define a complete lattice ingredient necessary for the definition of the various morphological operators. In fact, this method creates a strong close similarity between vectors in order to move towards an order of the same principle as defined in the set of real numbers. The more the number of classes increases, the more the colors of the same class are similar and therefore the absolute adaptive referent tends to be optimal. On the other hand, the more the class number decreases or equals two, the more our approach tends towards the hybrid order developed previously. The proposed order has been implemented on different morphological operators through different multicomponent images. The fundamental robustness of our approach and that relating to noise have been tested. The results on the gradient, Laplacian and Median filter operators show the performance of our new order.展开更多
In order to solve the problem of the management of municipal solid waste in Abidjan (Cote d’Ivoire), a sanitary landfill has been designed in Kossihouen. Despite the adverse greenhouse effects of the methane, this ga...In order to solve the problem of the management of municipal solid waste in Abidjan (Cote d’Ivoire), a sanitary landfill has been designed in Kossihouen. Despite the adverse greenhouse effects of the methane, this gas has a potential of electrical energy. The estimation of methane emissions from the waste can be an economic and useful way for more accurate control and management of waste disposal in Kossihouen. Therefore, conducting this study is essential. Methane emissions were estimated based on the methane generation constant K and the methane generation potential L0 using LandGEM 3.02. The results show that the quantity of methane emissions was 7.97E+07 m3/year. Based on this result, the methane content can generate 10% of total electricity consumed in Abidjan in 2026. This paper could serve as a source of scientific information for decision making on environmental sustainability in waste-to-energy projects in Cote d’Ivoire.展开更多
In this paper, the theory of plausible and paradoxical reasoning of Dezert- Smarandache (DSmT) is used to take into account the paradoxical charac-ter through the intersections of vegetation, aquatic and mineral surfa...In this paper, the theory of plausible and paradoxical reasoning of Dezert- Smarandache (DSmT) is used to take into account the paradoxical charac-ter through the intersections of vegetation, aquatic and mineral surfaces. In order to do this, we developed a classification model of pixels by aggregating information using the DSmT theory based on the PCR5 rule using the ∩NDVI, ∩MNDWI and ∩NDBaI spectral indices obtained from the ASTER satellite images. On the qualitative level, the model produced three simple classes for certain knowledge (E, V, M) and eight composite classes including two union classes characterizing partial ignorance ({E,V}, {M,V}) and six classes of intersection of which three classes of simple intersection (E∩V, M∩V, E∩M) and three classes of composite intersection (E∩{M,V}, M∩{E,V}, V∩{E,M}), which represent paradoxes. This model was validated with an average rate of 93.34% for the well-classified pixels and a compliance rate of the entities in the field of 96.37%. Thus, the model 1 retained provides 84.98% for the simple classes against 15.02% for the composite classes.展开更多
It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are ...It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are to days observing the apparition of flexible dynamic spectrum allocation methods. These methods that ought to improve more significantly the spectrum use have gained much interest. In fact, the digital dividend due to the change-over from the analog television to the digital terrestrial television must be efficiently used. So the Dynamic Spectrum Access (DSA) can potentially play a key role in shaping the future digital dividend use. In the DSA, two kinds of users or networks coexist on different channels. The first one, known as the primary user, accesses to a channel with high priority;and the second one, known as secondary user has a low priority. This paper presents a dynamic spectrum access protocol based on an auction framework. Our protocol is an interesting tool that allows the networks to bid and obtain on the available spectrum, the rights to be primary and secondary users according their valuations and traffic needs. Based on certain offers, our protocol selects primary and secondary users for each idle channel in order to realize the maximum economic for the regulator or social benefits. We deal with the case in which the offers of the networks are independent one another even if they will share the same channels. We design an algorithm in accordance with our dynamic spectrum access protocol. The algorithm is used here to find an optimal solution to the access allocation problem, specifically to digital dividend. Finally, the results in the numeric section, regarding the three suggested scenarios, show that the proposed dynamic spectrum access protocol is viable. The algorithm is able to eliminate all non-compliant bidders for the available spectrum sharing. We notice that the revenue or social benefits of the regulator is maximized when we have on each channel, one primary user and the maximum number of secondary users.展开更多
文摘A semi-analytical approach for the pulsating solutions of the 3D complex Cubic-quintic Ginzburg-Landau Equation (CGLE) is presented in this article. A collective variable approach is used to obtain a system of variational equations which give the evolution of the light pulses parameters as a function of the propagation distance. The collective coordinate approach is incomparably faster than the direct numerical simulation of the propagation equation. This allows us to obtain, efficiently, a global mapping of the 3D pulsating soliton. In addition it allows describing the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics.
文摘This paper presents a robust sixth-order Discrete-time Extended Sliding Mode Observer (DESMO) for sensorless control of PMSM in order to estimate the currents, speed, rotor position, load torque and stator resistance. The satisfying simulation results on Simulink/Matlab environment for a 1.6 kW PMSM demonstrate the good performance and stability of the proposed ESMO algorithm against parameter variation, modeling uncertainty, measurement and system noises.
文摘The solution we propose optimizes the energy inside the wireless sensor network (WSN) with higher performance. The WSN is composed of many sensors nodes which collect the information, treat that information then send it to the base station. The information is received by the base station (BS) then data?are?sent to the users by that BS. The most important element in sensor node is energy, as the lifetime of wireless sensor network depends on the sensor node energy. So many researches had been made in order to improve this energy basing routing protocols. As a result, we are able to propose a solution that optimizes this energy. In this paper, we are presenting a new approach of selecting node sensor base on routing protocol and process to send data to the base station. This ameliorates wireless sensor network lifetime and increases?the transmission sensor node to base station.
文摘Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.
文摘In this paper, we are presenting a new vector order, a solution to the open problem of the generalization of mathematical morphology to multicomponent images and multidimensional data. This approach uses the paradigm of P–order. Its primary principle consists, first in partitioning the multi-component image in the attribute space by a classification method in different numbers of classes, and then the vector attributes are ordered within each class (intra-order-class). And finally the classes themselves are ordered in turn from their barycenter (inter-class order). Thus, two attribute vectors (or colors) whatever, belonging to the vector image can be compared. Provided with this relation of order, vectors attributes of a multivariate image define a complete lattice ingredient necessary for the definition of the various morphological operators. In fact, this method creates a strong close similarity between vectors in order to move towards an order of the same principle as defined in the set of real numbers. The more the number of classes increases, the more the colors of the same class are similar and therefore the absolute adaptive referent tends to be optimal. On the other hand, the more the class number decreases or equals two, the more our approach tends towards the hybrid order developed previously. The proposed order has been implemented on different morphological operators through different multicomponent images. The fundamental robustness of our approach and that relating to noise have been tested. The results on the gradient, Laplacian and Median filter operators show the performance of our new order.
文摘In order to solve the problem of the management of municipal solid waste in Abidjan (Cote d’Ivoire), a sanitary landfill has been designed in Kossihouen. Despite the adverse greenhouse effects of the methane, this gas has a potential of electrical energy. The estimation of methane emissions from the waste can be an economic and useful way for more accurate control and management of waste disposal in Kossihouen. Therefore, conducting this study is essential. Methane emissions were estimated based on the methane generation constant K and the methane generation potential L0 using LandGEM 3.02. The results show that the quantity of methane emissions was 7.97E+07 m3/year. Based on this result, the methane content can generate 10% of total electricity consumed in Abidjan in 2026. This paper could serve as a source of scientific information for decision making on environmental sustainability in waste-to-energy projects in Cote d’Ivoire.
文摘In this paper, the theory of plausible and paradoxical reasoning of Dezert- Smarandache (DSmT) is used to take into account the paradoxical charac-ter through the intersections of vegetation, aquatic and mineral surfaces. In order to do this, we developed a classification model of pixels by aggregating information using the DSmT theory based on the PCR5 rule using the ∩NDVI, ∩MNDWI and ∩NDBaI spectral indices obtained from the ASTER satellite images. On the qualitative level, the model produced three simple classes for certain knowledge (E, V, M) and eight composite classes including two union classes characterizing partial ignorance ({E,V}, {M,V}) and six classes of intersection of which three classes of simple intersection (E∩V, M∩V, E∩M) and three classes of composite intersection (E∩{M,V}, M∩{E,V}, V∩{E,M}), which represent paradoxes. This model was validated with an average rate of 93.34% for the well-classified pixels and a compliance rate of the entities in the field of 96.37%. Thus, the model 1 retained provides 84.98% for the simple classes against 15.02% for the composite classes.
文摘It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are to days observing the apparition of flexible dynamic spectrum allocation methods. These methods that ought to improve more significantly the spectrum use have gained much interest. In fact, the digital dividend due to the change-over from the analog television to the digital terrestrial television must be efficiently used. So the Dynamic Spectrum Access (DSA) can potentially play a key role in shaping the future digital dividend use. In the DSA, two kinds of users or networks coexist on different channels. The first one, known as the primary user, accesses to a channel with high priority;and the second one, known as secondary user has a low priority. This paper presents a dynamic spectrum access protocol based on an auction framework. Our protocol is an interesting tool that allows the networks to bid and obtain on the available spectrum, the rights to be primary and secondary users according their valuations and traffic needs. Based on certain offers, our protocol selects primary and secondary users for each idle channel in order to realize the maximum economic for the regulator or social benefits. We deal with the case in which the offers of the networks are independent one another even if they will share the same channels. We design an algorithm in accordance with our dynamic spectrum access protocol. The algorithm is used here to find an optimal solution to the access allocation problem, specifically to digital dividend. Finally, the results in the numeric section, regarding the three suggested scenarios, show that the proposed dynamic spectrum access protocol is viable. The algorithm is able to eliminate all non-compliant bidders for the available spectrum sharing. We notice that the revenue or social benefits of the regulator is maximized when we have on each channel, one primary user and the maximum number of secondary users.