期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries 被引量:1
1
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithium‐ion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage
2
作者 Yuanxing Zhang Borong Wu +6 位作者 Jiaying Bi Xinyu Zhang Daobin Mu Xin-Yu Zhang Ling Zhang Yao Xiao Feng Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期216-233,共18页
The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Her... The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications. 展开更多
关键词 localized high-concentration electrolytes prelithiation SEI layer silicon anode
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:2
3
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel
4
作者 Haibo Feng Shaohua Li +7 位作者 Kexiao Wang Junheng Gao Shuize Wang Haitao Zhao Zhenyu Han Yong Deng Yuhe Huang Xinping Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期833-841,共9页
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au... Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads. 展开更多
关键词 eutectoid pearlite rail steel prior austenite grain size dynamic recrystallization single-pass hot deformation three-pass hot deformation
下载PDF
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring
5
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Research progress of alkaline earth metal iron-based oxides as anodes for lithium-ion batteries
6
作者 Mingyuan Ye Xiaorui Hao +6 位作者 Jinfeng Zeng Lin Li Pengfei Wang Chenglin Zhang Li Liu Fanian Shi Yuhan Wu 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期21-33,共13页
Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap... Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs. 展开更多
关键词 alkali-earth metal iron-based oxides anodes lithium-ion batteries electrochemical energy storage
下载PDF
The 2022 report of synergetic roadmap on carbon neutrality and clean air for China:Accelerating transition in key sectors 被引量:3
7
作者 Yu Lei Zhicong Yin +47 位作者 Xi Lu Qiang Zhang Jicheng Gong Bofeng Cai Cilan Cai Qimin Chai Huopo Chen Renjie Chen Shi Chen Wenhui Chen Jing Cheng Xiyuan Chi Hancheng Dai Xiangzhao Feng Guannan Geng Jianlin Hu Shan Hu Cunrui Huang Tiantian Li Wei Li Xiaomei Li Jun Liu Xin Liu Zhu Liu Jinghui Ma Yue Qin Dan Tong Xuhui Wang Xuying Wang Rui Wu Qingyang Xiao Yang Xie Xiaolong Xu Tao Xue Haipeng Yu Da Zhang Ning Zhang Shaohui Zhang Shaojun Zhang Xian Zhang Xin Zhang Zengkai Zhang Bo Zheng Yixuan Zheng Jian Zhou Tong Zhu Jinnan Wang Kebin He 《Environmental Science and Ecotechnology》 SCIE 2024年第3期4-18,共15页
China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoti... China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoting synergetic control of these two issues.The Synergetic Roadmap project was launched in 2021 to track and analyze the progress of synergetic control in China by developing and monitoring key indicators.The Synergetic Roadmap 2022 report is the first annual update,featuring 20 indicators across five aspects:synergetic governance system and practices,progress in structural transition,air pollution and associated weather-climate interactions,sources,sinks,and mitigation pathway of atmospheric composition,and health impacts and benefits of coordinated control.Compared to the comprehensive review presented in the 2021 report,the Synergetic Roadmap 2022 report places particular emphasis on progress in 2021 with highlights on actions in key sectors and the relevant milestones.These milestones include the proportion of non-fossil power generation capacity surpassing coal-fired capacity for the first time,a decline in the production of crude steel and cement after years of growth,and the surging penetration of electric vehicles.Additionally,in 2022,China issued the first national policy that synergizes abatements of pollution and carbon emissions,marking a new era for China's pollution-carbon co-control.These changes highlight China's efforts to reshape its energy,economic,and transportation structures to meet the demand for synergetic control and sustainable development.Consequently,the country has witnessed a slowdown in carbon emission growth,improved air quality,and increased health benefits in recent years. 展开更多
关键词 Synergetic roadmap Carbon neutrality Clean air
原文传递
Research progress on vanadium oxides for potassium-ion batteries 被引量:3
8
作者 Yuhan Wu Guangbo Chen +6 位作者 Xiaonan Wu Lin Li Jinyu Yue Yinyan Guan Juan Hou Fanian Shi Jiyan Liang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期46-59,共14页
Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium ox... Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium oxides exhibit great potentiality.Vanadium oxides can provide multiple electron transfers during electrochemical reactions because vanadium possesses a variety of oxidation states.Meanwhile,their relatively low cost and superior material,structural,and physicochemical properties endow them with strong competitiveness.Although some inspiring research results have been achieved,many issues and challenges remain to be further addressed.Herein,we systematically summarize the research progress of vanadium oxides for PIBs.Then,feasible improvement strategies for the material properties and electrochemical performance are introduced.Finally,the existing challenges and perspectives are discussed with a view to promoting the development of vanadium oxides and accelerating their practical applications. 展开更多
关键词 potassium-ion batteries vanadium oxides electrode materials electrochemical performance improvement strategies
下载PDF
3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications 被引量:2
9
作者 Yongbiao Mu Youqi Chu +6 位作者 Lyuming Pan Buke Wu Lingfeng Zou Jiafeng He Meisheng Han Tianshou Zhao Lin Zeng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期215-245,共31页
Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nano... Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries. 展开更多
关键词 additive manufacturing 3D printing rechargeable batteries electrochemical energy storage devices lithium-ion battery
下载PDF
Mixed Cations Enabled Combined Bulk and Interfacial Passivation for Efficient and Stable Perovskite Solar Cells 被引量:2
10
作者 Pengfei Wu Shirong Wang +4 位作者 Jin Hyuck Heo Hongli Liu Xihan Chen Xianggao Li Fei Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期116-127,共12页
Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite f... Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities. 展开更多
关键词 Alternating-cation-interlayer Bulk defects Interfacial passivation Perovskite solar cells
下载PDF
Bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize energy losses for efficient and stable perovskite solar cells 被引量:1
11
作者 Baibai Liu Ru Li +10 位作者 Qixin Zhuang Xuemeng Yu Shaokuan Gong Dongmei He Qian Zhou Hua Yang Xihan Chen Shirong Lu Zong-Xiang Xu Zhigang Zang Jiangzhao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期277-287,I0008,共12页
The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device s... The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device stability.Here,we report a bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize bulk and interfacial energy losses for high-performance perovskite photovoltaics.4-trifluoromethyl-benzamidine hydrochloride(TBHCl)containing–CF_(3),amidine cation and Cl^(-)is in advance incorporated into SnO_(2)colloid solution to realize bottom-up modification.The synergistic effect of multiple functional groups and multiple-bond-induced chemical interaction are revealed theoretically and experimentally.F and Cl^(-)can passivate oxygen vacancy and/or undercoordinated Sn^(4+)defects by coordinating with Sn^(4+).The F can suppress cation migration and modulate crystallization via hydrogen bond with FA^(+),and can passivate lead defects by coordinating with Pb^(2+).The–NH_(2)–C=NH^(+)_(2)and Cl^(-)can passivate cation and anion vacancy defects through ionic bonds with perovskites,respectively.Through TBHCl modification,the suppression of agglomeration of SnO_(2)nanoparticles,bulk and interfacial defect passivation,and release of tensile strains of perovskite films are demonstrated,which resulted in a PCE enhancement from 21.28%to 23.40%and improved stability.With post-treatment,the efficiency is further improved to 23.63%. 展开更多
关键词 Perovskite solar cells Bottom-up holistic carrier management strategy Functional group synergistic effect Defect passivation Stress release
下载PDF
The Increasing Role of Synergistic Effects in Carbon Mitigation and Air Quality Improvement, and Its Associated Health Benefits in China
12
作者 Jie Wang Xi Lu +6 位作者 Pengfei Du Haotian Zheng Zhaoxin Dong Zihua Yin Jia Xing Shuxiao Wang Jiming Hao 《Engineering》 SCIE EI CAS CSCD 2023年第1期103-111,共9页
A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such... A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such synergistic effects;hence, existing studies lack a consistent framework for comparison. Here, we introduce a new synergistic indicator defined as the pollutant generation per gross domestic product (GDP) and adopt an integrated analysis framework by linking the logarithmic mean Divisia index (LMDI) method, response surface model (RSM), and global exposure mortality model (GEMM) to evaluate the synergistic effects of carbon mitigation on both air pollutant reduction and public health in China. The results show that synergistic effects played an increasingly important role in the emissions mitigation of SO_(2), NOx, and primary particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5), and the synergistic mitigation of pollutants respectively increase from 3.1, 1.4, and 0.3 Mt during the 11th Five-Year Plan (FYP) (2006–2010) to 5.6, 3.7, and 1.9 Mt during the 12th FYP (2011–2015). Against the non-control scenario, synergistic effects alone contributed to a 15% reduction in annual mean PM2.5 concentration, resulting in the prevention of 0.29 million (95% confidential interval: 0.28–0.30) PM2.5-attributable excess deaths in 2015. Synergistic benefits to air quality improvement and public health were remarkable in the developed and population-dense eastern provinces and municipalities. With the processes of urbanization and carbon neutrality in the future, synergistic effects are expected to continue to increase. Realizing climate targets in advance in developed regions would concurrently bring strong synergistic effects to air quality and public health. 展开更多
关键词 Synergistic effects Indicator Carbon mitigation Air pollution control Spatial and temporal disparities
下载PDF
Unraveling abnormal buried interface anion defect passivation mechanisms depending on cation-induced steric hindrance for efficient and stable perovskite solar cells
13
作者 Dongmei He Ru Li +8 位作者 Baibai Liu Qian Zhou Hua Yang Xuemeng Yu Shaokuan Gong Xihan Chen Baomin Xu Shangfeng Yang Jiangzhao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期1-9,I0001,共10页
Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal a... Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal an abnormal buried interface anion defect passivation mechanism depending on cationinduced steric hindrance.The IL molecules containing the same anion([BF4]^(-))and different sizes of imidazolium cations induced by substituent size are used to manipulate buried interface.It was revealed what passivated interfacial defects is mainly anions instead of cations.Theoretical and experimental results demonstrate that the large-sized cations can weaken the ionic bond strength between anions and cations,and facilitate the interaction between anions and SnO2as well as perovskites,which is conducive to interfacial defect passivation and ameliorating interfacial contact.It can be concluded that interfacial chemical interaction strength and defect passivation effect are positively correlated with the size of cations.The discovery breaks conventional thinking that large-sized modification molecules would weaken their chemical interaction with perovskite.Compared with the control device(21.54%),the device based on 1,3-Bis(1-adamantyl)-imidazolium tetrafluoroborate(BAIMBF4)with maximum size cations achieves a significantly enhanced efficiency of 23.61%along with much increased moisture,thermal and light stabilities. 展开更多
关键词 Perovskite solar cells Buried interface Ionic liquid Anion defect passivation mechanism Cation-induced steric hindrance
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:3
14
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
A facile and green strategy for mass production of dispersive FeCo-rich phosphides@N,P-doped carbon electrocatalysts toward efficient and stable rechargeable Zn-air battery and water splitting
15
作者 Bo Wang Qiao Liu +5 位作者 Ao Yuan Qing Shi Lan Jiang Weiyou Yang Tao Yang Xinmei Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第15期1-11,共11页
One key step for advancing the widespread practical application of rechargeable metal-air batteries and water electrolysis fundamentally relies on the development of cost-effective multifunctional electrocata-lysts to... One key step for advancing the widespread practical application of rechargeable metal-air batteries and water electrolysis fundamentally relies on the development of cost-effective multifunctional electrocata-lysts toward oxygen and hydrogen-involving reactions.The present work initiates a tofu-derived one-pot strategy for green,facile,and mass production of highly active and stable catalyst toward oxygen reduc-tion/evolution and hydrogen evolution reactions,through the preparation of Fe/Co cross-linked tofu gel and the subsequent pyrolysis.Despite the free use of additional N/P precursors or pore-forming agents,the as-prepared materials comprise highly dispersive FeCo-rich phosphides nanoparticles and porous N,P co-doped carbon network inherited from the tofu skeleton.The resultant catalysts exhibit remarkably enhanced trifunctional activities as compared to the Fe_(2)P and Co_(2)P counterparts,along with better long-term stabilities than the benchmark RuO_(2)and Pt/C catalysts.Accordingly,the as-assembled Zn-air battery delivers a large power density(174 mW cm^(-2))with excellent cycle stability(the gap of charge/discharge voltage@10 mA cm^(-2)increases by 0.01 V after 720 h of operation,vs.0.16 V of Pt/C-RuO_(2)based battery after 378 h).Furthermore,the as-constructed alkaline electrolyzer just requires a small voltage of 1.55 V@10 mA cm^(-2),which outperforms nearly all of those of biomass-derived electrocatalysts ever reported,and that of noble metal catalysts-based electrolyzers(1.72 V@10 mA cm^(-2)for Pt/C-RuO_(2)),underscoring their bright future toward commercial applications in green energy conversion devices. 展开更多
关键词 Soybean PHOSPHIDES ELECTROCATALYSIS Overall water splitting Zn-air battery
原文传递
Bi@C nanosphere anode with Na^(+)-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures
16
作者 Lingli Liu Siqi Li +7 位作者 Lei Hu Xin Liang Wei Yang Xulai Yang Kunhong Hu Chaofeng Hou Yongsheng Han Shulei Chou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期325-337,共13页
The low ion transport is a major obstacle for low-temperature(LT)sodium-ion batteries(SIBs).Herein,a core-shell structure of bismuth(Bi)nanospheres coated with carbon(Bi@C)is constructed by utilizing a novel Bi-based ... The low ion transport is a major obstacle for low-temperature(LT)sodium-ion batteries(SIBs).Herein,a core-shell structure of bismuth(Bi)nanospheres coated with carbon(Bi@C)is constructed by utilizing a novel Bi-based complex(1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand)as the precursor,which provides an effective template to fabricate Bi-based anodes.At-40℃,the Bi@C anode achieves a high capacity,which is equivalent to 96%of that at 25℃,benefitting from the core-shell nanostructured engineering and Na^(+)-ether-solvent cointercalation process.The special Na+-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na+diffusion kinetics,enabling the excellent low-temperature performance of the Bi@C electrode.As expected,the fabricated Na_(3)V_(2)(PO_(4))_(3)//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at-40℃.Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT,thanks to a much lower diffusion energy barrier(167 meV)and a lower reaction activation energy(32.2 kJ mol^(-1))of Bi@C anode in comparison with that of bulk Bi.This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions. 展开更多
关键词 BISMUTH CORE-SHELL structure LOW-TEMPERATURE conditions sodium-ion batteries
下载PDF
Regulating the intrinsic electronic structure of carbon nanofibers with high-spin state Ni for sodium storage with high-power density
17
作者 Zhijia Zhang Gang Xie +6 位作者 Yuefang Chen Yanhao Wei Mengmeng Zhang Shulei Chou Yunxiao Wang Yifang Zhang Yong Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期16-23,共8页
Carbon nanofibers(CNFs)with high specific surface area show great potential for sodium storage as a hard carbon material.Herein,CNFs anchored with Ni nanoparticles(CNFs/Ni)were prepared through chemical vapor depositi... Carbon nanofibers(CNFs)with high specific surface area show great potential for sodium storage as a hard carbon material.Herein,CNFs anchored with Ni nanoparticles(CNFs/Ni)were prepared through chemical vapor deposition and impregnation reduction methods,in situ growing on the three-dimensional porous copper current collector(3DP-Cu).The coupling effect of high-spin state Ni nanopar-ticles leads to the increase of defect density and the expansion of lattice spacing of CNFs.Meanwhile,the 3DP-Cu ensures a high loading capacity of CNFs and short ion/electron transport channels.As an integral binder-free anode,the 3DP-Cu/CNFs/Ni exhibits excellent electrochemical performance,which demon-strates a high specific capacity with 298.5 mAh g^(-1)at 1000 mA g^(-1)after 1500 cycles,and a high power density with 200 mAh g^(-1)over 1000 cycles at 5000 mA g^(-1).Density functional theory calculation re-sults show that the high-spin state Ni regulates the electronic structure of CNFs,which significantly reduces the adsorption energy for Na^(+)(-2.7 Ev)and thus enables high-rate capability.The regulation of the electronic structure of carbon materials by high-spin state metal provides a new strategy for developing high-power carbonaceous anode materials for sodium-ion batteries. 展开更多
关键词 Carbon nanofibers Ni nanoparticles High-spin state Sodium-ion batteries Anode materials Density functional theory calculation
原文传递
Exploring pore-scale production characteristics of oil shale after CO_(2) huff‘n’puff in fractured shale with varied permeability
18
作者 Tianhan Xu Jian Wang +3 位作者 Yuhao Lu Danling Wang Li Yu Ye Tian 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期194-203,共10页
Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchang... Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs. 展开更多
关键词 Shale reservoir Hydraulic fracturing CO_(2)huff‘n’puff NMR Production characteristics
下载PDF
Boosting the zinc storage performance of vanadium dioxide by integrated morphology engineering and carbon nanotube conductive networks
19
作者 Lijie Ma Xiaolin Wang +7 位作者 Xiang Chen Jianbin Gao Yiwen Wang Yuehai Song Yaran Zhao Shizhe Gao Lin Li Jianchao Sun 《Nano Research》 SCIE EI CSCD 2024年第8期7136-7143,共8页
Vanadium dioxide(VO_(2)) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries.Nevertheless,the intrinsic low electronic c... Vanadium dioxide(VO_(2)) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries.Nevertheless,the intrinsic low electronic conductivity of VO_(2) results in an unsatisfactory electrochemical performance.Herein,a flower-like VO_(2)/carbon nanotubes(CNTs)composite was obtained by a facile hydrothermal method.The unique flower-like morphology shortens the ion transport length and facilitates electrolyte infiltration.Meanwhile,the CNT conductive networks is in favor of fast electron transfer.A highly reversible zinc storage mechanism was revealed by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy.As a result,the VO_(2)/CNTs cathode exhibits a high reversible capacity(410 mAh·g^(−1)),superior rate performance(305 mAh·g^(−1)at 5 A·g^(−1)),and excellent cycling stability(a reversible capacity of 221 mAh·g^(−1)was maintained even after 2000 cycles).This work provides a guide for the design of high-performance cathode materials for aqueous zinc metal batteries. 展开更多
关键词 VO_(2)/carbon nanotubes morphology engineering zinc metal batteries cathode materials conductive networks
原文传递
Cost dynamics of onshore wind energy in the context of China's carbon neutrality target
20
作者 Shi Chen Youxuan Xiao +3 位作者 Chongyu Zhang Xi Lu Kebin He Jiming Hao 《Environmental Science and Ecotechnology》 SCIE 2024年第3期109-117,共9页
Wind energy has become one of the most important measures for China to achieve its carbon neutrality goal.The spatial and temporal evolvement of economic competitiveness for wind energy becomes an important concern in... Wind energy has become one of the most important measures for China to achieve its carbon neutrality goal.The spatial and temporal evolvement of economic competitiveness for wind energy becomes an important concern in shaping the decarbonization pathway in China.There has been an urgent need in power system planning to model the future dynamics of cost decline and supply potential for wind power in the context of carbon neutrality until 2060.Existing studies often fail to capture the rapid decline in the cost of wind power generation in recent years,and the prediction of wind power cost decline is more conservative than the reality.This study constructs an integrated model to evaluate the cost-competitiveness and grid parity potential of China's onshore wind electricity at fine spatial resolution with updated parameters.Results indicate that the total onshore wind potential amounts to 54.0 PWh.The average levelized cost of wind power is expected to decline from CNY 0.39 kWh^(-1)in 2020 to CNY 0.30 and CNY 0.21 kWh^(-1)in 2030 and 2060.28.3%,67.6%,and 97.6%of the technical potentials hold power costs lower than coal power in 2020,2030,and 2060. 展开更多
关键词 Wind power Carbon neutrality Electricity potential Economic competitiveness Grid parity
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部