Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the pla...Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the plant growth-promoting bacterial strain,Chlorella,related to plant metabolic features and sodium chloride content in arable soil is limited.The present study was conducted to investigate the exogenous application of food waste along with Chlorella,which improved the physio-morphological features of red pepper.Our results revealed that this combination enhanced the organic matter in the soil,ultimately improving the fertility rate of the soil,and the physio-morphological features,such as chlorophyll a content(24.5±0.7),root(7.8±0.7)cm and shoot length(12.1±0.7)cm,fresh weight(2.1±0.05)g,dry weight(0.19±0.05)g,mineral contents,and hormonal concentration(ABA by up to 2 folds).The combined treatment also minimized free radicals via the activation of the intrinsic antioxidant series cascade and electrolyte leakage.Our findings showed that adding Chlorella and food wastes improved growth characteristics and can be used as a green bio-fertilizer for sustainable agriculture.展开更多
This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Lands...This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.展开更多
Revealing the indica-japonica differentiation in parents of hybridization between indica and japonica rice and their derived lines can provide theoretical and practical bases for the breeding of practical inter-subspe...Revealing the indica-japonica differentiation in parents of hybridization between indica and japonica rice and their derived lines can provide theoretical and practical bases for the breeding of practical inter-subspecific hybrid rice. Using subspeciesspecific molecular markers ILP (intron length polymorphism) and Cheng's index, the indica-japonica differentiation was analyzed with special materials including 18 indica-japonica hybrid parents and 39 derived lines, which accumulated different wide compatibility and restoring genes by convergent cross method in 21 years spanning four breeding phases. The indica-japonica differentiation was detected on all tested loci in 57 materials. Among the 18 parental lines, 4 were japonica type, 5 japonicaclinous type, 8 indicaclinous type and one indica type. The japonica proportion indexes in indica restorer lines Minghui 63 and 9308 were 12.50 and 33.33 %, respectively, while that in japonica restorer line C418 was only 31.25%. Among the 39 derived lines from indica-japonica hybridization, one was japonica type, 11 japonicaclinous type, 20 indicaclinous type and 7 indica type. The japonica proportion index in Minghui 502 was only 10.42%. The results of indica and japonica classification by ILP molecular markers and Cheng's index were relatively consistent. The correlation coefficient between the japonica proportion index and morphology index was 0.794**, while that between the indica proportion index and morphology index was -0.7662**. ILP markers could be used to accurately detect the proportion of indica/japonica content in the genome of a rice variety. The results of indica-japonica differentiation analysis could make reasonable explanation for that the hybrids obtained from indica-japonica type restorer lines had obvious heterosis. This conclusion would provide important guidance in efficient use of beneficial genes of inter-subspecific hybrid rice.展开更多
Forest soils have high carbon densities compared to other land-uses.Soil carbon sequestration is important to reduce CO 2 concentrations in the atmosphere.An eff ective climate change mitigation strategy involves limi...Forest soils have high carbon densities compared to other land-uses.Soil carbon sequestration is important to reduce CO 2 concentrations in the atmosphere.An eff ective climate change mitigation strategy involves limiting the emissions of greenhouse gases from soils.Khyber Pakhtunkhwa is the most forested province of Pakistan,hosting about one-third of the country’s 4.5×106 ha forest area.Soil organic carbon in the province’s forests was estimated through a fi eld-based study carried out during 2014–17 covering the whole province.Data was collected from 373 sample plots laid out in diff erent forest types using a stratifi ed cluster sampling technique.The total quantity of soil organic carbon was estimated at 59.4×106 t with an average of 52.4±5.3 t/ha.About 69%of the total soil carbon is present in temperate forests.Subtropical broad-leaved and subtropical pine forests constitute 11.4%and 8.8%of the soil carbon stock respectively.Similarly,subalpine and oak forests have respective shares of 5.1%and 5.7%in the soil carbon pool.The lowest carbon stock(0.1%)was found in dry-tropical thorn forests.The highest soil carbon density was found in subalpine forests(69.5±7.2 t/ha)followed by moist temperate forests(68.5±6.7 t/ha)and dry temperate forests(60.7±6.5 t/ha).Oak forests have carbon density of 43.4±7.1 t/ha.Subtropical pine,subtropical broad-leaved and dry tropical thorn forests have soil carbon densities of 36.3±3.7,32.8±6.2 and 31.5±3.5 t/ha,respectively.The forests of the Khyber Pakhtunkhwa province have substantial amounts of soil carbon which must be conserved for climate change mitigation and maintenance of sound forest health.展开更多
Eucalyptus adult material requires more successive subcultures in the in vitro multiplication phase for increased vigor and cellular activity. This study evaluated the endophytic manifestation and shoot multiplication...Eucalyptus adult material requires more successive subcultures in the in vitro multiplication phase for increased vigor and cellular activity. This study evaluated the endophytic manifestation and shoot multiplication of one 13-year-old Eucalyptus benthamii clone under different culture conditions and used canopy branches(CB) and trunk base material as explant sources. The culture media were wood plant medium(WPM), Murashige and Skoog medium(MS) and JADS(Correia and co-authors medium).Based on the results of the initial multiplication experiment, further tests examined sucrose concentrations and p H. Morphophysiology, dry mass production, endophyticmanifestation and histochemical were determined. Explant sources responded differently to MS and JADS media, but the WPM medium promoted homogeneous development.The responses were similar for both explant sources when sucrose concentrations varied. Shoots died in the absence of sucrose, showed high oxidation at 60 g L-1 and optimal development at 30 g L-1. Endophytes were more evident for shoots from the CB origin. Explant sources responded distinctively to treatment due to physiological and intrinsic genetic factors. Therefore, explant sources, different culture media, sucrose concentration and p H may determine micropropagation success and influence the presence and/or intensity of endophytic manifestation.展开更多
The cytological characteristics of major green-tide-forming green algae <i>Ulva prolifera</i> collected from Yellow Sea were studied th<span style="white-space:normal;"><span style="...The cytological characteristics of major green-tide-forming green algae <i>Ulva prolifera</i> collected from Yellow Sea were studied th<span style="white-space:normal;"><span style="font-family:;" "="">r</span></span><span style="white-space:normal;"><span style="font-family:;" "="">ough cutting segments, long time low temperature or dark treatments. After </span></span><span style="white-space:normal;"><span style="font-family:;" "="">being </span></span><span style="white-space:normal;"><span style="font-family:;" "="">dried in the shade and preserved at -</span></span><span style="white-space:normal;"><span style="font-family:;" "="">20<span style="white-space:nowrap;">°</span></span></span><span style="white-space:normal;"><span style="font-family:;" "="">C for 30 days, the <i>U.</i> <i>prolifera</i> was cultured at 4<span style="white-space:nowrap;">°</span>C in sterilized seawater under 40 μmol photons m<sup>-2</sup>·s<sup>-1</sup> light intensity for 120 days, results indicated that the plastid of <i>U. prolifera</i> continuously shrank with the extension of treatment, and most cells turned white and died, only a small amount of cells still contained a few of visible inclusions at the 120d of treatment. Then those samples were transferred to 20<span style="white-space:nowrap;">°</span>C and 40 μmol photons m<sup>-2</sup>·s<sup>-1</sup> condition for recovery cultivation, after about 10 days, some recovery cells were observed in the thallus, and those cells developed to young thallus gradually and released germ cells almost in the same time. After about 60 days of recovery cultivation, the newly-grown green thallus broke through the original dead thallus, and the germ cells also grew to new individual thallus. Before dark treatment, the <i>U.</i> <i>prolifera</i> cells were filled with plastid, contained visible starch grain and discernible cell outlines, while after 120 days of dark treatment, the plastid shrank and degraded together with the disappearance of cell inclusions, and the cell outlines also blurred, then those samples were transferred to optimal culture conditions at 20<span style="white-space:nowrap;">°</span>C in 40 μmol photons m<sup>-2</sup>·s<sup>-1</sup> light intensity, and 15 days later, newly-grown cells appeared on the almost dead thallus, these cells divided continuously and grew to young thallus, and those newly-grown thallus also generated active germ cells, which developed to new thallus that cytologically identical to the original thallus. Observation of chopped tissue of <i>U.</i> <i>prolifera</i> cultivated at 20<span style="white-space:nowrap;">°</span>C, 40</span></span><span style="white-space:normal;"><span style="font-family:;" "=""> </span></span><span style="white-space:normal;"><span style="font-family:;" "="">μmol m</span></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">-</span></sup></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">2</span></sup></span><span style="white-space:normal;"><span style="font-family:;" "="">·s</span></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">-</span></sup></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">1</span></sup></span><span style="white-space:normal;"><span style="font-family:;" "=""> showed that the morphological upper part cells turned to germ cells first, those germ cells including gametophyte and sporophyte, which released later and grew to new individual thallus. These findings provided cytological evidences for how <i>U. prolifera</i> live through stress conditions such as low temperature, darkness, and also useful for understanding the mechanism of the occurrence of green tide.</span></span>展开更多
Enhanced biological phosphorus removal(EBPR) was investigated in an anaerobic/aerobic sequencing batch reactor(SBR) supplied with glucose as a single organic substrate.The results illustrated that EBPR process could a...Enhanced biological phosphorus removal(EBPR) was investigated in an anaerobic/aerobic sequencing batch reactor(SBR) supplied with glucose as a single organic substrate.The results illustrated that EBPR process could also occur successfully with glucose other than short chain fatty acids(SCFAs).High phosphorus release and poly-hydroxyalkanoate(PHA) accumulation in the anaerobic phase was found vital for the removal of phosphorus during the aerobic phase.The measurement of intracellular reserves revealed that glycogen had a higher chance to replace the energy role of poly-P under anaerobic conditions.Moreover,glycogen was also utilized as the carbon source for PHA synthesis,as well as a reducing power as reported earlier.The accumulated PHA in this system was mainly in the form of poly-hydroxyvalerate(PHV) instead of poly-hydroxybutyrate(PHB),and was inferred to be caused by the excess reducing power contained in glucose.Lactate as a fermentation product was also found released into the bulk solution.Applying fundamental biochemistry knowledge to the experimental results,a conceptual biochemical model was developed to explain the metabolism of the glucose-induced EBPR.展开更多
基金supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korean Government(MSIT)(No.2022R1A2C1008993).
文摘Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the plant growth-promoting bacterial strain,Chlorella,related to plant metabolic features and sodium chloride content in arable soil is limited.The present study was conducted to investigate the exogenous application of food waste along with Chlorella,which improved the physio-morphological features of red pepper.Our results revealed that this combination enhanced the organic matter in the soil,ultimately improving the fertility rate of the soil,and the physio-morphological features,such as chlorophyll a content(24.5±0.7),root(7.8±0.7)cm and shoot length(12.1±0.7)cm,fresh weight(2.1±0.05)g,dry weight(0.19±0.05)g,mineral contents,and hormonal concentration(ABA by up to 2 folds).The combined treatment also minimized free radicals via the activation of the intrinsic antioxidant series cascade and electrolyte leakage.Our findings showed that adding Chlorella and food wastes improved growth characteristics and can be used as a green bio-fertilizer for sustainable agriculture.
基金This research was supported by project number(RSP2024R384)King Saud University,Riyadh,Saudi Arabia.
文摘This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.
基金supported by the National Key Technologies R&D Program of China(2006BAD01A01-3)Important Specialized Science and Technology Item of Fujian Province,China (2004NZ01-4)Important Subject Fund of Science and Technology Department of Fujian Province,China(2007N0070)
文摘Revealing the indica-japonica differentiation in parents of hybridization between indica and japonica rice and their derived lines can provide theoretical and practical bases for the breeding of practical inter-subspecific hybrid rice. Using subspeciesspecific molecular markers ILP (intron length polymorphism) and Cheng's index, the indica-japonica differentiation was analyzed with special materials including 18 indica-japonica hybrid parents and 39 derived lines, which accumulated different wide compatibility and restoring genes by convergent cross method in 21 years spanning four breeding phases. The indica-japonica differentiation was detected on all tested loci in 57 materials. Among the 18 parental lines, 4 were japonica type, 5 japonicaclinous type, 8 indicaclinous type and one indica type. The japonica proportion indexes in indica restorer lines Minghui 63 and 9308 were 12.50 and 33.33 %, respectively, while that in japonica restorer line C418 was only 31.25%. Among the 39 derived lines from indica-japonica hybridization, one was japonica type, 11 japonicaclinous type, 20 indicaclinous type and 7 indica type. The japonica proportion index in Minghui 502 was only 10.42%. The results of indica and japonica classification by ILP molecular markers and Cheng's index were relatively consistent. The correlation coefficient between the japonica proportion index and morphology index was 0.794**, while that between the indica proportion index and morphology index was -0.7662**. ILP markers could be used to accurately detect the proportion of indica/japonica content in the genome of a rice variety. The results of indica-japonica differentiation analysis could make reasonable explanation for that the hybrids obtained from indica-japonica type restorer lines had obvious heterosis. This conclusion would provide important guidance in efficient use of beneficial genes of inter-subspecific hybrid rice.
基金This research is part of the doctoral dissertation of the fi rst author at PMAS Arid Agriculture University,Rawalpindi,Pakistan(AAUR).The authors are extremely grateful to Prof.Dr.Sarwat N.Mirza,former Vice-Chancellor of PMAS Arid Agriculture University,Rawalpindi,for his valuable inputs and support during the study period.Thanks are also extended to the staff of Forest Mensuration Branch,Pakistan Forest Institute,Peshawar for their help in data collection in the fi eld.
文摘Forest soils have high carbon densities compared to other land-uses.Soil carbon sequestration is important to reduce CO 2 concentrations in the atmosphere.An eff ective climate change mitigation strategy involves limiting the emissions of greenhouse gases from soils.Khyber Pakhtunkhwa is the most forested province of Pakistan,hosting about one-third of the country’s 4.5×106 ha forest area.Soil organic carbon in the province’s forests was estimated through a fi eld-based study carried out during 2014–17 covering the whole province.Data was collected from 373 sample plots laid out in diff erent forest types using a stratifi ed cluster sampling technique.The total quantity of soil organic carbon was estimated at 59.4×106 t with an average of 52.4±5.3 t/ha.About 69%of the total soil carbon is present in temperate forests.Subtropical broad-leaved and subtropical pine forests constitute 11.4%and 8.8%of the soil carbon stock respectively.Similarly,subalpine and oak forests have respective shares of 5.1%and 5.7%in the soil carbon pool.The lowest carbon stock(0.1%)was found in dry-tropical thorn forests.The highest soil carbon density was found in subalpine forests(69.5±7.2 t/ha)followed by moist temperate forests(68.5±6.7 t/ha)and dry temperate forests(60.7±6.5 t/ha).Oak forests have carbon density of 43.4±7.1 t/ha.Subtropical pine,subtropical broad-leaved and dry tropical thorn forests have soil carbon densities of 36.3±3.7,32.8±6.2 and 31.5±3.5 t/ha,respectively.The forests of the Khyber Pakhtunkhwa province have substantial amounts of soil carbon which must be conserved for climate change mitigation and maintenance of sound forest health.
基金supported by the National Council of Technological and Scientific Development(CNPq)Process No.143253/2011-5to Coordination for the Improvement of Higher Education Personnel(CAPES)。
文摘Eucalyptus adult material requires more successive subcultures in the in vitro multiplication phase for increased vigor and cellular activity. This study evaluated the endophytic manifestation and shoot multiplication of one 13-year-old Eucalyptus benthamii clone under different culture conditions and used canopy branches(CB) and trunk base material as explant sources. The culture media were wood plant medium(WPM), Murashige and Skoog medium(MS) and JADS(Correia and co-authors medium).Based on the results of the initial multiplication experiment, further tests examined sucrose concentrations and p H. Morphophysiology, dry mass production, endophyticmanifestation and histochemical were determined. Explant sources responded differently to MS and JADS media, but the WPM medium promoted homogeneous development.The responses were similar for both explant sources when sucrose concentrations varied. Shoots died in the absence of sucrose, showed high oxidation at 60 g L-1 and optimal development at 30 g L-1. Endophytes were more evident for shoots from the CB origin. Explant sources responded distinctively to treatment due to physiological and intrinsic genetic factors. Therefore, explant sources, different culture media, sucrose concentration and p H may determine micropropagation success and influence the presence and/or intensity of endophytic manifestation.
文摘The cytological characteristics of major green-tide-forming green algae <i>Ulva prolifera</i> collected from Yellow Sea were studied th<span style="white-space:normal;"><span style="font-family:;" "="">r</span></span><span style="white-space:normal;"><span style="font-family:;" "="">ough cutting segments, long time low temperature or dark treatments. After </span></span><span style="white-space:normal;"><span style="font-family:;" "="">being </span></span><span style="white-space:normal;"><span style="font-family:;" "="">dried in the shade and preserved at -</span></span><span style="white-space:normal;"><span style="font-family:;" "="">20<span style="white-space:nowrap;">°</span></span></span><span style="white-space:normal;"><span style="font-family:;" "="">C for 30 days, the <i>U.</i> <i>prolifera</i> was cultured at 4<span style="white-space:nowrap;">°</span>C in sterilized seawater under 40 μmol photons m<sup>-2</sup>·s<sup>-1</sup> light intensity for 120 days, results indicated that the plastid of <i>U. prolifera</i> continuously shrank with the extension of treatment, and most cells turned white and died, only a small amount of cells still contained a few of visible inclusions at the 120d of treatment. Then those samples were transferred to 20<span style="white-space:nowrap;">°</span>C and 40 μmol photons m<sup>-2</sup>·s<sup>-1</sup> condition for recovery cultivation, after about 10 days, some recovery cells were observed in the thallus, and those cells developed to young thallus gradually and released germ cells almost in the same time. After about 60 days of recovery cultivation, the newly-grown green thallus broke through the original dead thallus, and the germ cells also grew to new individual thallus. Before dark treatment, the <i>U.</i> <i>prolifera</i> cells were filled with plastid, contained visible starch grain and discernible cell outlines, while after 120 days of dark treatment, the plastid shrank and degraded together with the disappearance of cell inclusions, and the cell outlines also blurred, then those samples were transferred to optimal culture conditions at 20<span style="white-space:nowrap;">°</span>C in 40 μmol photons m<sup>-2</sup>·s<sup>-1</sup> light intensity, and 15 days later, newly-grown cells appeared on the almost dead thallus, these cells divided continuously and grew to young thallus, and those newly-grown thallus also generated active germ cells, which developed to new thallus that cytologically identical to the original thallus. Observation of chopped tissue of <i>U.</i> <i>prolifera</i> cultivated at 20<span style="white-space:nowrap;">°</span>C, 40</span></span><span style="white-space:normal;"><span style="font-family:;" "=""> </span></span><span style="white-space:normal;"><span style="font-family:;" "="">μmol m</span></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">-</span></sup></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">2</span></sup></span><span style="white-space:normal;"><span style="font-family:;" "="">·s</span></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">-</span></sup></span><span style="white-space:normal;"><sup><span style="font-family:;" "="">1</span></sup></span><span style="white-space:normal;"><span style="font-family:;" "=""> showed that the morphological upper part cells turned to germ cells first, those germ cells including gametophyte and sporophyte, which released later and grew to new individual thallus. These findings provided cytological evidences for how <i>U. prolifera</i> live through stress conditions such as low temperature, darkness, and also useful for understanding the mechanism of the occurrence of green tide.</span></span>
基金Science and Technology Project of Zhejiang and Hangzhou (No2007C13081, No20062912A06)
文摘Enhanced biological phosphorus removal(EBPR) was investigated in an anaerobic/aerobic sequencing batch reactor(SBR) supplied with glucose as a single organic substrate.The results illustrated that EBPR process could also occur successfully with glucose other than short chain fatty acids(SCFAs).High phosphorus release and poly-hydroxyalkanoate(PHA) accumulation in the anaerobic phase was found vital for the removal of phosphorus during the aerobic phase.The measurement of intracellular reserves revealed that glycogen had a higher chance to replace the energy role of poly-P under anaerobic conditions.Moreover,glycogen was also utilized as the carbon source for PHA synthesis,as well as a reducing power as reported earlier.The accumulated PHA in this system was mainly in the form of poly-hydroxyvalerate(PHV) instead of poly-hydroxybutyrate(PHB),and was inferred to be caused by the excess reducing power contained in glucose.Lactate as a fermentation product was also found released into the bulk solution.Applying fundamental biochemistry knowledge to the experimental results,a conceptual biochemical model was developed to explain the metabolism of the glucose-induced EBPR.