A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the d...A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N20 chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10) 〈 CZA(CP) 〈 CZA(20) 〈 CZA(30); while the selectivity of MEK was increased in the order of CZA(CP) 〈 CZA(10) 〈 CZA(20) 〈CZA(30).展开更多
Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron mic...Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.展开更多
In this work, the amination of sulfonated polystyrene resin with alkyl secondary amine is investigated. The catalytic activities of the modified resins are determined through the hydration of l-butene. The optimum cha...In this work, the amination of sulfonated polystyrene resin with alkyl secondary amine is investigated. The catalytic activities of the modified resins are determined through the hydration of l-butene. The optimum chain length and the best range of amination rate are determined. It is found that the single-pass conversion of 1 -butene was raised 2% on average, and the relative activity was increased over 30% after modification. A hypothesis about the enhancement of catalytic activities by the inclusion of alkyl chain to wrap up the butene molecule is proposed.展开更多
Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that...Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.展开更多
A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space veloc...A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to- DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.展开更多
A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal comp...A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal complex ion[Cu(NH3) 4^2+-Mn(NH3)6^2+] as raw materials is easier to form good-structure mesoporous Cu-Mn-Al2O3 materials than using its nitrate salt [Cu(NO3)2-Mn(NO3)2]. The TPR tests results indicate that CuO and MnOx were homogeneously dispersed in the mesoporous materials. Their catalytic application to preferential catalytic oxidation of CO in a hydrogen-rich stream was studied. The activity varies in the order of CMA(1:1, molar ratio)〉 CMA(1:2)〉CMA(2:1)〉CMA(CP)〉CMA(1:0)≈CMA(0:1). The CMA(1:0) and CMA(0:1) have lower activity compared to other samples, implying that there existed coordination effect between Cu-Mn in the samples. The selectivity varied in the order of CMA(0:1)≥CMA(1:2)〉CMA(1:1)〉CMA(2:1)〉CMA(1:0) at higher temperature (≥ 120 ℃), indicating that increasing the Cu content enhanced the conversion of H2. The sample CMA(CP) made by coprecipitation method has a lower CO oxidation activity and selectivity than its counter-parts of mesoporous Cu-Mn-Al2O3 materials[CMA(1:2)], this attributed to the lower surface area of the former and poor interaction of CuO with MnOx.展开更多
Composite oxide FeO x /Al 2 O 3 -supported gold catalysts were prepared by a modified two-step method. The effects of preparation conditions on the initial catalytic activity and long-time stability were studied for C...Composite oxide FeO x /Al 2 O 3 -supported gold catalysts were prepared by a modified two-step method. The effects of preparation conditions on the initial catalytic activity and long-time stability were studied for CO oxidation. XRD, XPS and in situ FTIR were employed to investigate the state of FeO x and the species on the catalyst surface. The results showed that Au/FeO x /Al 2 O 3 catalysts prepared by this method exhibited high activity and high stability in a wide pH value range. Calcination pretreatment was proved to be beneficial to improving the activity and stability. The beneficial effects of FeO x acting as a structural promoter could be ascribed to the ability to supply active oxygen species. As the precursor of FeO x , Fe(NO 3 ) 3 is superior to FeCl 3 for obtaining higher stability.展开更多
Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion ...Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion applications.Herein,Fe,O-dual doped Ni2P(Fe,O-Ni2P)nanoarray is successfully synthesized on carbon cloth demonstrating enhanced electrocatalytic activity and stability for oxygen evolution reaction(OER)under alkaline media.The as-synthesized Fe,O-Ni2P nanoarray exhibits obviously improved OER performance with a low overpotential of 210 mV at 10 mA cm^-2 current density and a Tafel slope of48 mV dec^-1,as well as long-term durability.The strong coupling interaction induced changes in electronic structure lead to relatively higher oxidation state and stronger oxidation ability of the Fe,O-Ni2P nanoarray,together with the high electrochemical surface area and good conductivity contribute to the superior OER performance.This work highlights the anion-cation dual doping strategy may be an effective method for fabrication of catalysts relating to energy conversion applications.展开更多
Two new borate compounds, C4H10N2·B6O8(OH)2 and (NH3CH2CH2NH3)B5O8 (OH)2, have been solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction, IR, elemental analysis and...Two new borate compounds, C4H10N2·B6O8(OH)2 and (NH3CH2CH2NH3)B5O8 (OH)2, have been solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction, IR, elemental analysis and thermal analysis. Compound 1 crystallizes in the monoclinic system, space group P21/c, with a = 8.3318(17), b = 6.2118(12), c = 12.479(3) A, β = 108.96(3)°, V = 610.8(2) A^3, Mr = 313.02, Z = 2, 13,.= 1.702 g/cm^,/J = 0.150 mm^-1, F(000) = 320, R = 0.0387 and wR = 0.0924. Its layered structure is linked by infinite covalently coordinated neutral sheets with 3,20-membered window system, which are built up from alternative B6O8(OH)2 subunits donated by two piperzazine nitrogen donors. 2 crystallizes in monoclinic, space group Co, with a = 6.7207(13), b = 11.481 (2), c = 12.564(3)A,β = 95.25(3)°, V = 965.4(3) A^3, Mr = 261.18, Z = 4, Dc = 1.797 g/cm^3,/t = 0.164 mm^-1, F(000) = 536, R = 0.0396 and wR = 0.0752. Its oxoborate structure is generated from the sheets of 3,9-membered boron rings bonded diamine molecules through electrostatic and H-bonding interactions to form a two-dimensional layered network.展开更多
Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were exa...Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.展开更多
The development of metal-organic frameworks(MOFs)with highly efficient adsorption and separation of acet-ylene is very important and challenging in chemical industry due to the explosive nature of acetylene.Porous MOF...The development of metal-organic frameworks(MOFs)with highly efficient adsorption and separation of acet-ylene is very important and challenging in chemical industry due to the explosive nature of acetylene.Porous MOFs can be constructed by inserting a second auxiliary ligand,which allows the use of large ligands to construct non-interpenetrated structures and increase pore utilization.Herein,SNNU-205 is successfully synthesized,which connects two sets of interpenetrated structures to form a double walled cage-within-cage structure by using the introduction of a second auxiliary ligand.The modified pore environment enables SNNU-205 to efficiently selectively adsorb C_(2)H_(2)over CO_(2).At 298 K and 1 atm,SNNU-205 can uptake much more C_(2)H_(2)(76.3 cm^(3)g1)than CO_(2)(47.3 cm^(3)g^(-1)),resulting in a high substance ratio of C_(2)H_(2)-to-CO_(2)(1.6).More importantly,the ideal adsorbed solution theory selectivity calculations and column breakthrough tests further indicate SNNU-205 to be promising adsorbents for C_(2)H_(2)adsorption and purification.展开更多
A modified CuO/CeO2 catalyst was prepared by surfactant-assisted impregnation method and showed better catalytic activity for low temperature CO oxidation than that from conventional impregnation method. The physicoch...A modified CuO/CeO2 catalyst was prepared by surfactant-assisted impregnation method and showed better catalytic activity for low temperature CO oxidation than that from conventional impregnation method. The physicochemical properties of different CuO/CeO2 catalysts were characterized by thermogravimetrie and differential scanning calorimetric measurements (TG-DSC), X-ray diffraction (XRD), N2 adsorpti0n-desorption, Raman spectroscopy, H2 temperature-programmed reduction (H2-TPR), tern- perature-programmed desorption of 02 (O2-TPD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The re- sults suggested that the addition of hexadecyl trimethyl ammonium bromide (CTAB) into the impregnation solution could improve the dispersion of CuO species, which could facilitate Cu2+ incorporating into CeO2 lattice and strengthened the synergistic effects between CuO and CeO2, making the lattice oxygen more active, and eventually resulting in enhanced activity for CO oxidation.展开更多
CeO2-ZrO2 mixed oxide (Ce0.6Zr0.402) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.402 catalysts with various CuO contents (0 wt.%-1 5 wt.%) via ...CeO2-ZrO2 mixed oxide (Ce0.6Zr0.402) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.402 catalysts with various CuO contents (0 wt.%-1 5 wt.%) via the method of incipient-wetness im- pregnation. The obtained CuO/Ce0.6Zr0.402 samples were characterized by N2 adsorption, XRD, Raman, TEM and H2-TPR technolo- gies, and their catalytic activities for CO oxidation were investigated. The results showed that the activity of CuO/Ce0.6Zr0.402 catalyst was strongly influenced by the content of CuO, and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxida- tion, which could be attributed to the high dispersion and reducibility of CuO, and high oxygen vacancy concentration in the catalyst.展开更多
The hydration of cyclohexene was determined in a stirred tank of 100 mL in a batch mode in the presence of modified or unmodified resin as catalyst. The ion-exchange sulfonate resin was modified with alkyl secondary a...The hydration of cyclohexene was determined in a stirred tank of 100 mL in a batch mode in the presence of modified or unmodified resin as catalyst. The ion-exchange sulfonate resin was modified with alkyl secondary amine. At an optimum amination rate of 15%, the conversion of cyclohexene reached to 22% and the selectivity of cyclohexanol was 95.6%. In a temperature range of 90--150℃, the activity and selectivity of the modified resin ca- talyst were much higher than those of the unmodified resin catalyst, which was attributed to the inclusion formed between cyclohexene and alkyl chain and also the quasi-lipophilic phase formed around the outer surface of resin beads. The formed quasi-lipophilic phase formed enhanced the conversion of cyclohexene and depressed the forma- tion of by-products.展开更多
In this work,a novel blue-green fluorescence phosphorous oxide quantum dots(PO QDs)was synthesized by solvothermal method in N-methyl-2-pyrrolidone(NMP)solution without any protection treatment during synthesis.Upon e...In this work,a novel blue-green fluorescence phosphorous oxide quantum dots(PO QDs)was synthesized by solvothermal method in N-methyl-2-pyrrolidone(NMP)solution without any protection treatment during synthesis.Upon excitation at 400 nm,PO QDs emitted blue-green fluorescence with quantum yield of 0.28.PO QDs exhibited the high inertness to air or moisture,the excellent water solubility,and stable emission intensity in a wide pH range and in high ionic strength solution.Interestingly,PO QDs could give the positive optical response to iron ions(Fe^(3+))and iodine ion(I^(-)).The photoluminescence(PL)of PO QDs could be directly quenched by Fe^(3+).While I^(-)quenched the PO QDs PL by means of Ag^(+)-mediated PO QDs system via the internal filtration effects(IFE)induced by the formation of AgI.Moreover,the biocompatibility and low toxicity of PO QDs verified in bean sprout and Hela cells indicated the promising application of PO QDs in medicine related fields.Furthermore,PO QDs could also be utilized in luminescent composite film for various application scenarios.展开更多
基金supported by Science and Technology Development Project of Shandong Province. 2007GG3 WZ03018
文摘A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N20 chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10) 〈 CZA(CP) 〈 CZA(20) 〈 CZA(30); while the selectivity of MEK was increased in the order of CZA(CP) 〈 CZA(10) 〈 CZA(20) 〈CZA(30).
基金The Natural Science Foundation of China (No.20273057,20473070).
文摘Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.
文摘In this work, the amination of sulfonated polystyrene resin with alkyl secondary amine is investigated. The catalytic activities of the modified resins are determined through the hydration of l-butene. The optimum chain length and the best range of amination rate are determined. It is found that the single-pass conversion of 1 -butene was raised 2% on average, and the relative activity was increased over 30% after modification. A hypothesis about the enhancement of catalytic activities by the inclusion of alkyl chain to wrap up the butene molecule is proposed.
基金supported by Natural Science Foundation of China (Grant 21273193, 21473231 and 20973148)
文摘Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.
文摘A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to- DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.
基金Supported by the Science and Technology Development Project of Shandong Province,China(No.2007GG3WZ03018)
文摘A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal complex ion[Cu(NH3) 4^2+-Mn(NH3)6^2+] as raw materials is easier to form good-structure mesoporous Cu-Mn-Al2O3 materials than using its nitrate salt [Cu(NO3)2-Mn(NO3)2]. The TPR tests results indicate that CuO and MnOx were homogeneously dispersed in the mesoporous materials. Their catalytic application to preferential catalytic oxidation of CO in a hydrogen-rich stream was studied. The activity varies in the order of CMA(1:1, molar ratio)〉 CMA(1:2)〉CMA(2:1)〉CMA(CP)〉CMA(1:0)≈CMA(0:1). The CMA(1:0) and CMA(0:1) have lower activity compared to other samples, implying that there existed coordination effect between Cu-Mn in the samples. The selectivity varied in the order of CMA(0:1)≥CMA(1:2)〉CMA(1:1)〉CMA(2:1)〉CMA(1:0) at higher temperature (≥ 120 ℃), indicating that increasing the Cu content enhanced the conversion of H2. The sample CMA(CP) made by coprecipitation method has a lower CO oxidation activity and selectivity than its counter-parts of mesoporous Cu-Mn-Al2O3 materials[CMA(1:2)], this attributed to the lower surface area of the former and poor interaction of CuO with MnOx.
基金supported by the Science and Research Reward Fund Program of Shandong Excellent Young Scientist of China (2007BS04033)
文摘Composite oxide FeO x /Al 2 O 3 -supported gold catalysts were prepared by a modified two-step method. The effects of preparation conditions on the initial catalytic activity and long-time stability were studied for CO oxidation. XRD, XPS and in situ FTIR were employed to investigate the state of FeO x and the species on the catalyst surface. The results showed that Au/FeO x /Al 2 O 3 catalysts prepared by this method exhibited high activity and high stability in a wide pH value range. Calcination pretreatment was proved to be beneficial to improving the activity and stability. The beneficial effects of FeO x acting as a structural promoter could be ascribed to the ability to supply active oxygen species. As the precursor of FeO x , Fe(NO 3 ) 3 is superior to FeCl 3 for obtaining higher stability.
基金financial support from the National Science Foundation of China(51671094,21606189)China Postdoctoral Science Foundation(2017M612174)+1 种基金Shandong Provincial Natural Science Foundation(ZR2015BQ011)the Science and Technology Project of University of Jinan(XKY1826)。
文摘Developing of high-performance and low-cost electrocatalysts is of great significance to reduce the overpotential and accelerated the reaction rate of oxygen evolution in water splitting and related energy conversion applications.Herein,Fe,O-dual doped Ni2P(Fe,O-Ni2P)nanoarray is successfully synthesized on carbon cloth demonstrating enhanced electrocatalytic activity and stability for oxygen evolution reaction(OER)under alkaline media.The as-synthesized Fe,O-Ni2P nanoarray exhibits obviously improved OER performance with a low overpotential of 210 mV at 10 mA cm^-2 current density and a Tafel slope of48 mV dec^-1,as well as long-term durability.The strong coupling interaction induced changes in electronic structure lead to relatively higher oxidation state and stronger oxidation ability of the Fe,O-Ni2P nanoarray,together with the high electrochemical surface area and good conductivity contribute to the superior OER performance.This work highlights the anion-cation dual doping strategy may be an effective method for fabrication of catalysts relating to energy conversion applications.
基金the Natural Science Foundation of Henan Province (0611021600, 0311050500)the Key Discipline Foundation of Zhoukou Normal University
文摘Two new borate compounds, C4H10N2·B6O8(OH)2 and (NH3CH2CH2NH3)B5O8 (OH)2, have been solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction, IR, elemental analysis and thermal analysis. Compound 1 crystallizes in the monoclinic system, space group P21/c, with a = 8.3318(17), b = 6.2118(12), c = 12.479(3) A, β = 108.96(3)°, V = 610.8(2) A^3, Mr = 313.02, Z = 2, 13,.= 1.702 g/cm^,/J = 0.150 mm^-1, F(000) = 320, R = 0.0387 and wR = 0.0924. Its layered structure is linked by infinite covalently coordinated neutral sheets with 3,20-membered window system, which are built up from alternative B6O8(OH)2 subunits donated by two piperzazine nitrogen donors. 2 crystallizes in monoclinic, space group Co, with a = 6.7207(13), b = 11.481 (2), c = 12.564(3)A,β = 95.25(3)°, V = 965.4(3) A^3, Mr = 261.18, Z = 4, Dc = 1.797 g/cm^3,/t = 0.164 mm^-1, F(000) = 536, R = 0.0396 and wR = 0.0752. Its oxoborate structure is generated from the sheets of 3,9-membered boron rings bonded diamine molecules through electrostatic and H-bonding interactions to form a two-dimensional layered network.
基金supported by the Science and Research Reward Fund Program of Shandong Excellent Young Scientist of China (2007BS04033)
文摘Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.
基金supported by the National Natural Science Foundation of China(22101244)the Natural Science Foundation of Shandong Province(ZR2021QB044).
文摘The development of metal-organic frameworks(MOFs)with highly efficient adsorption and separation of acet-ylene is very important and challenging in chemical industry due to the explosive nature of acetylene.Porous MOFs can be constructed by inserting a second auxiliary ligand,which allows the use of large ligands to construct non-interpenetrated structures and increase pore utilization.Herein,SNNU-205 is successfully synthesized,which connects two sets of interpenetrated structures to form a double walled cage-within-cage structure by using the introduction of a second auxiliary ligand.The modified pore environment enables SNNU-205 to efficiently selectively adsorb C_(2)H_(2)over CO_(2).At 298 K and 1 atm,SNNU-205 can uptake much more C_(2)H_(2)(76.3 cm^(3)g1)than CO_(2)(47.3 cm^(3)g^(-1)),resulting in a high substance ratio of C_(2)H_(2)-to-CO_(2)(1.6).More importantly,the ideal adsorbed solution theory selectivity calculations and column breakthrough tests further indicate SNNU-205 to be promising adsorbents for C_(2)H_(2)adsorption and purification.
基金supported by the National Natural Science Foundation of China(21273150)‘‘Shu Guang’’Project(10GG23)of Shanghai Municipal Education CommissionShanghai Education Development Foundation
文摘A modified CuO/CeO2 catalyst was prepared by surfactant-assisted impregnation method and showed better catalytic activity for low temperature CO oxidation than that from conventional impregnation method. The physicochemical properties of different CuO/CeO2 catalysts were characterized by thermogravimetrie and differential scanning calorimetric measurements (TG-DSC), X-ray diffraction (XRD), N2 adsorpti0n-desorption, Raman spectroscopy, H2 temperature-programmed reduction (H2-TPR), tern- perature-programmed desorption of 02 (O2-TPD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The re- sults suggested that the addition of hexadecyl trimethyl ammonium bromide (CTAB) into the impregnation solution could improve the dispersion of CuO species, which could facilitate Cu2+ incorporating into CeO2 lattice and strengthened the synergistic effects between CuO and CeO2, making the lattice oxygen more active, and eventually resulting in enhanced activity for CO oxidation.
基金supported by National Natural Science Foundation of China(21273150)‘‘Shu Guang’’ Project of Shanghai Municipal Education CommissionShanghai Education Development Foundation(10GG23)
文摘CeO2-ZrO2 mixed oxide (Ce0.6Zr0.402) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.402 catalysts with various CuO contents (0 wt.%-1 5 wt.%) via the method of incipient-wetness im- pregnation. The obtained CuO/Ce0.6Zr0.402 samples were characterized by N2 adsorption, XRD, Raman, TEM and H2-TPR technolo- gies, and their catalytic activities for CO oxidation were investigated. The results showed that the activity of CuO/Ce0.6Zr0.402 catalyst was strongly influenced by the content of CuO, and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxida- tion, which could be attributed to the high dispersion and reducibility of CuO, and high oxygen vacancy concentration in the catalyst.
文摘The hydration of cyclohexene was determined in a stirred tank of 100 mL in a batch mode in the presence of modified or unmodified resin as catalyst. The ion-exchange sulfonate resin was modified with alkyl secondary amine. At an optimum amination rate of 15%, the conversion of cyclohexene reached to 22% and the selectivity of cyclohexanol was 95.6%. In a temperature range of 90--150℃, the activity and selectivity of the modified resin ca- talyst were much higher than those of the unmodified resin catalyst, which was attributed to the inclusion formed between cyclohexene and alkyl chain and also the quasi-lipophilic phase formed around the outer surface of resin beads. The formed quasi-lipophilic phase formed enhanced the conversion of cyclohexene and depressed the forma- tion of by-products.
基金the National Natural Science Foundation of China(No.21808142)for financial support。
文摘In this work,a novel blue-green fluorescence phosphorous oxide quantum dots(PO QDs)was synthesized by solvothermal method in N-methyl-2-pyrrolidone(NMP)solution without any protection treatment during synthesis.Upon excitation at 400 nm,PO QDs emitted blue-green fluorescence with quantum yield of 0.28.PO QDs exhibited the high inertness to air or moisture,the excellent water solubility,and stable emission intensity in a wide pH range and in high ionic strength solution.Interestingly,PO QDs could give the positive optical response to iron ions(Fe^(3+))and iodine ion(I^(-)).The photoluminescence(PL)of PO QDs could be directly quenched by Fe^(3+).While I^(-)quenched the PO QDs PL by means of Ag^(+)-mediated PO QDs system via the internal filtration effects(IFE)induced by the formation of AgI.Moreover,the biocompatibility and low toxicity of PO QDs verified in bean sprout and Hela cells indicated the promising application of PO QDs in medicine related fields.Furthermore,PO QDs could also be utilized in luminescent composite film for various application scenarios.