Atmospheric electricity research has been conducted actively in China,having profited from the development and application of high temporal and spatial resolution lightning detection and location technologies.This pap...Atmospheric electricity research has been conducted actively in China,having profited from the development and application of high temporal and spatial resolution lightning detection and location technologies.This paper reviews the scientific advances made in the field of atmospheric electricity in China from 2011 to 2018,covering the following five aspects:(1)lightning detection and location techniques;(2)discharge processes and parameters associated with rocket-triggered lightning;(3)physical processes in natural lightning and attachment to the ground;(4)lightning activities and charge structure in different thunderstorms;and(5)effects of thunderstorms on the upper atmosphere.In addition,some outstanding questions for future research are outlined.展开更多
Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonli...Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types: (1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following: (1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of E1 Nifio-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mecha- nisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.展开更多
The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for E...The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former,with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases,indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.展开更多
Previous studies suggest that the atmospheric precursor of E1 Nifio-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in ...Previous studies suggest that the atmospheric precursor of E1 Nifio-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole (SPQ). The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode (SAM), the first Pacific-South America (PSA1) mode, and the second Pacific-South America (PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.展开更多
Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the ...Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the research progress on atmospheric electricity achieved in China during 2019-22 is reviewed focusing on the following aspects:(1)lightning detection and location techniques,(2)thunderstorm electricity,(3)lightning forecasting methods and techniques,(4)physical processes of lightning discharge,(5)high energy emissions and effects of thunderstorms on the upper atmosphere,and(6)the effect of aerosol on lightning.展开更多
The role of phoretic forces in providing in-cloud and below-cloud scavenging due to falling drop is reviewed by considering published papers dealing with theoretical models, laboratory and field measurements. Theoreti...The role of phoretic forces in providing in-cloud and below-cloud scavenging due to falling drop is reviewed by considering published papers dealing with theoretical models, laboratory and field measurements. Theoretical analyses agree that Brownian diffusion appears to dominate drop scavenging of aerosol with radius less than 0.1 μm, and inertial impaction dominates scavenging of aerosol with radius higher than 1 μm. Thus, there is a minimum collection efficiency for particles in the approximate range 0.1 μm - 1 μm, where phoretic forces are felt. Generally speaking, published papers report not uniform evaluations of the contribution of thermo- and diffusiophoretic forces. This disagreement is partially due to the different laboratory and field conditions, and different theoretical approaches.展开更多
This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS)and MRIAGCM3-2-S(MRI)with respect to tropical cyclone(TC)characteristics over the Western North Pacific(WNP)for the July-October m...This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS)and MRIAGCM3-2-S(MRI)with respect to tropical cyclone(TC)characteristics over the Western North Pacific(WNP)for the July-October months of 1985-2014.The focus is on investigating the role of the tropical easterly jet over the Western Pacific(WP_TEJ)in modulating the simulation biases in terms of their climatological distribution and interannual variability of WNP TC genesis frequency(TCGF)based on the analysis of the genesis potential index(GPI).Results show that the two models reasonably capture the main TC genesis location,the maximum center of frequency,and track density;however,their biases mainly lie in simulating the intense TCs and TCGF distributions.The MRI better simulates the windpressure relationship(WPR)but overestimates the proportion of super typhoons(SSTYs).At the same time,FGOALS underestimates the WPR and the proportion of SSTYs but better simulates the total WNP TC precipitation.In particular,FGOALS overestimates the TCGF in the northeastern WNP,which is strongly tied to an overestimated WP_TEJ and the enhanced vertical circulation to the north of its entrance region.In contrast,the MRI simulates a weaker WP_TEJ and vertical circulation,leading to a negative TCGF bias in most of the WNP.Both models exhibit comparable capability in simulating the interannual variability of WP_TEJ intensity,but the composite difference of large-scale atmospheric factors between strong and weak WP_TEJ years is overestimated,resulting in larger interannual anomalies of WNP TCGF,especially for FGOALS.Therefore,accurate simulations of the WP_TEJ and the associated oceanic and atmospheric factors are crucial to further improving WNP TC simulations for both models.展开更多
In this study,we derived atmospheric profiles of temperature,moisture,and ozone,along with surface emissivity,skin temperature,and surface pressure,from infrared-sounder radiances under clear sky (cloudless) condition...In this study,we derived atmospheric profiles of temperature,moisture,and ozone,along with surface emissivity,skin temperature,and surface pressure,from infrared-sounder radiances under clear sky (cloudless) condition.Clouds were detected objectively using the Atmospheric Infrared Sounder under a relatively low spatial resolution and cloud-mask information from the Moderate Resolution Imaging Spectroradiometer under a high horizontal resolution;this detection was conducted using space matching.Newton’s nonlinear physical iterative solution technique is applied to the radiative transfer equation (RTE) to retrieve temperature profiles,relative humidity profiles,and surface variables simultaneously.This technique is carried out by using the results of an eigenvector regression retrieval as the background profile and using corresponding iterative forms for the weighting functions of temperature and water-vapor mixing ratio.The iterative forms are obtained by applying the variational principle to the RTE.We also compared the retrievals obtained with different types of observations.The results show that the retrieved atmospheric sounding profile has great superiority over other observations by accuracy and resolution.Retrieved profiles can be used to improve the initial conditions of numerical models and used in areas where conventional observations are sparse,such as plateaus,deserts,and seas.展开更多
El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and de...El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and decaying over the next spring. Several studies have demonstrated that this feature arises as a result of seasonal variation in the growth rate of ENSO as expressed by the sea surface temperature(SST). The bias towards simulating the phase locking of ENSO by many state-of-the-art climate models is also attributed to the unrealistic depiction of the growth rate. In this study, the seasonal variation of SST growth rate in the Ni?o-3.4 region(5°S–5°N, 120°–170°W) is estimated in detail based on the mixed layer heat budget equation and recharge oscillator model during 1981–2020. It is suggested that the consideration of a variable mixed layer depth is essential to its diagnostic process. The estimated growth rate has a remarkable seasonal cycle with minimum rates occurring in spring and maximum rates evident in autumn. More specifically, the growth rate derived from the meridional advection(surface heat flux) is positive(negative) throughout the year. Vertical diffusion generally makes a negative contribution to the evolution of growth rate and the magnitude of vertical entrainment represents the smallest contributor. Analysis indicates that the zonal advective feedback is regulated by the meridional immigration of the intertropical convergence zone, which approaches its southernmost extent in February and progresses to its northernmost location in September, and dominates the seasonal variation of the SST growth rate.展开更多
There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circula...There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.展开更多
The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which ...The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature.展开更多
Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment ...Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.展开更多
This study investigated the effects of upper-level descending inflow(ULDI)associated with inner-eyewall convection on the formation of the moat in tropical cyclones(TCs)with secondary eyewall formation(SEF).In our num...This study investigated the effects of upper-level descending inflow(ULDI)associated with inner-eyewall convection on the formation of the moat in tropical cyclones(TCs)with secondary eyewall formation(SEF).In our numerical experiments,a clear moat with SEF occurred in TCs with a significant ULDI,while no SEF occurred in TCs without a significant ULDI.The eyewall convection developed more vigorously in the control run.A ULDI occurred outside the inner-eyewall convection,where it was symmetrically unstable.The ULDI was initially triggered by the diabatic warming released by the inner eyewall and later enhanced by the cooling below the anvil cloud.The ULDI penetrated the outer edge of the inner eyewall with relatively dry air and prevented excessive solid-phase hydrometeors from being advected further outward.It produced extensive sublimation cooling of falling hydrometeors between the eyewall and the outer convection.The sublimation cooling resulted in negative buoyancy and further induced strong subsidence between the eyewall and the outer convection.As a result,a clear moat was generated.Development of the moat in the ongoing SEF prevented the outer rainband from moving farther inward,helping the outer rainband to symmetrize into an outer eyewall.In the sensitivity experiment,no significant ULDI formed since the eyewall convection was weaker,and the eyewall anvil developed relatively lower,meaning the formation of a moat and thus an outer eyewall was less likely.This study suggests that a better-represented simulation of inner-eyewall convective structures and distribution of the solid-phase hydrometeors is important to the prediction of SEF.展开更多
Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon ...Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.展开更多
In this paper,we analyze how statistical modelling of extreme precipitation indices can support urban planners in the analysis and classification of the level of climate sensitivity of the territory and in the subsequ...In this paper,we analyze how statistical modelling of extreme precipitation indices can support urban planners in the analysis and classification of the level of climate sensitivity of the territory and in the subsequent definition of sustainable adaptive planning and design choices.These activities are part of a research project that addresses the issue of climate change from the urban planning perspective to identify solutions to current and future environmental challenges,increasing the climate resilience of infrastructures and communities in urban,rural and coastal areas.These research activities are based on the desire to promote integration between the approaches commonly adopted by urban planners and climate specialists to plan adequate joint risk reduction strategies.As part of this study,the focus will be on the risks produced by the greater frequency and intensity of floods,assessed by the IPCC(Intergovernmental Panel on Climate Change)as one of the key risks for Europe.Specifically,our attention focuses on pluvial flooding,proposing the definition of a statistical modelling of indices related to extreme precipitation and its application to the context of the Calabria Region,in Italy.The indices are recommended by the ETCCDI(Expert Team on Climate Change Detection and Indices)and elaborated starting from official historical data recorded by 146 telemetry active rain gauges,disseminated in the experimentation context.展开更多
This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-ext...This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-extending,resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific(WTP), which was unrelated to ENSO and manifested its own individual effect.The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer(with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly(SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC,contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA.展开更多
Three extreme cold events invaded China during the early winter period between December 2020 to mid-January 2021 and caused drastic temperature drops,setting new low-temperature records at many stations during 6−8 Jan...Three extreme cold events invaded China during the early winter period between December 2020 to mid-January 2021 and caused drastic temperature drops,setting new low-temperature records at many stations during 6−8 January 2021.These cold events occurred under background conditions of low Arctic sea ice extent and a La Niña event.This is somewhat expected since the coupled effect of large Arctic sea ice loss in autumn and sea surface temperature cooling in the tropical Pacific usually favors cold event occurrences in Eurasia.Further diagnosis reveals that the first cold event is related to the southward movement of the polar vortex and the second one is related to a continent-wide ridge,while both the southward polar vortex and the Asian blocking are crucial for the third event.Here,we evaluate the forecast skill for these three events utilizing the operational forecasts from the ECMWF model.We find that the third event had the highest predictability since it achieves the best skill in forecasting the East Asian cooling among the three events.Therefore,the predictability of these cold events,as well as their relationships with the atmospheric initial conditions,Arctic sea ice,and La Niña deserve further investigation.展开更多
The data of several rainfall products, including those estimated from satellite measurements and those forecasted via numerical weather modeling, for a severe debris-flow event in Zhouqu, Northwest China, are compared...The data of several rainfall products, including those estimated from satellite measurements and those forecasted via numerical weather modeling, for a severe debris-flow event in Zhouqu, Northwest China, are compared and analyzed in this paper. The satellite products, including CPC MORPHing technique(CMORPH), TMPA-RT, and PERSIANN are all near-real-time retrieved with high temporal and spatial resolutions. The numerical weather model used in this paper for precipitation forecasting is WRF. The results show that all three satellite products can basically reproduce the rainfall pattern, distribution, timing, scale, and extreme values of the event, compared with gauge data. Their temporal and spatial correlation coefficients with gauge data are as high as about 0.6, which is statistically significant at 0.01 level. The performance of the forecasted results modeled with different spatial resolutions are not as good as the satellite-estimated results, although their correlation coefficients are still statistically significant at 0.05 level. From the total rainfall and extreme value time series for the domain, it is clear that, from the grid-to-grid perspective, the passive microwave-based CMORPH and TRMM products are more accurate than the infrared-based PERSIANN, while PERSIANN performs very well from the general point of view, especially when considering the whole domain or the whole convective precipitation system. The forecasted data — especially the highest resolution model domain data — are able to represent the total or mean precipitation very well in the research domain, while for extreme values the errors are large. This study suggests that satellite-retrieved and model-forecasted rainfall data are a useful complement to gauge data, especially for areas without gauge stations and areas not covered by weather radars.展开更多
The linkage between the Arctic and midlatitudes has received much attention recently due to the rapidly changing climate.Many investigations have been conducted to reveal the relationship between the Arctic and Eurasi...The linkage between the Arctic and midlatitudes has received much attention recently due to the rapidly changing climate.Many investigations have been conducted to reveal the relationship between the Arctic and Eurasian extreme events from the perspective of climatological statistics.As a prediction source for extreme events in Eurasia,Arctic conditions are crucial for extreme event predictions.Therefore,it is urgent to explore the Arctic influence on the predictability of Eurasian extreme events due to the large uncertainties in Arctic conditions.Considering the sensitivity and nonlinearity of the atmospheric circulations in midlatitude to Arctic conditions,it is necessary to investigate the Arctic influences on Eurasian extreme weather events in case studies at weather time scales.Previous studies indicate that only perturbations in specific patterns have fast growth.Thus,the conditional nonlinear optimal perturbation approach is recommended for exploring the uncertainties in Arctic initial and boundary conditions and their synergistic effect on Eurasian extreme events.Moreover,the mechanism for extreme event formation may differ in different cases.Therefore,more extreme cases should be investigated to reach robust conclusions.展开更多
Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kur...Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kuroshio large meander(LM) path, and the growth mechanism of optimal initial errors was revealed. For each LM event, two types of initial error(denoted as CNOP1 and CNOP2) were obtained. Their large amplitudes were found located mainly in the upper 2500 m in the upstream region of the LM, i.e., southeast of Kyushu. Furthermore, we analyzed the patterns and nonlinear evolution of the two types of CNOP. We found CNOP1 tends to strengthen the LM path through southwestward extension. Conversely,CNOP2 has almost the opposite pattern to CNOP1, and it tends to weaken the LM path through northeastward contraction.The growth mechanism of optimal initial errors was clarified through eddy-energetics analysis. The results indicated that energy from the background field is transferred to the error field because of barotropic and baroclinic instabilities. Thus, it is inferred that both barotropic and baroclinic processes play important roles in the growth of CNOP-type optimal initial errors.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41630425)the National Key Basic Research Program of China(Grant No.2014CB441401)
文摘Atmospheric electricity research has been conducted actively in China,having profited from the development and application of high temporal and spatial resolution lightning detection and location technologies.This paper reviews the scientific advances made in the field of atmospheric electricity in China from 2011 to 2018,covering the following five aspects:(1)lightning detection and location techniques;(2)discharge processes and parameters associated with rocket-triggered lightning;(3)physical processes in natural lightning and attachment to the ground;(4)lightning activities and charge structure in different thunderstorms;and(5)effects of thunderstorms on the upper atmosphere.In addition,some outstanding questions for future research are outlined.
基金sponsored by the Chinese Academy of Science (Grant No.KZCX3-SW-230)the National Basic Research Program of China (Grant Nos. 2012CB955202 and 2010CB950402)the National Natural Science Foundation of China (Grant Nos. 41176013 and 41105038)
文摘Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types: (1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following: (1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of E1 Nifio-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mecha- nisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.
基金supported by the National Key Research and Development Program (Grant Nos. 2016YFA0601504 and 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41775059)+2 种基金the China National 973 Project (Grant No. 2015CB453203)the Basic Scientific Research and Operation Foundation of CAMS (Grant Nos. 2016Y001 and 2018Z006)the Science and Technology Development Fund of CAMS (Grant No. 2018KJ029)
文摘The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former,with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases,indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.
基金jointly supported by the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201506013)the 973 project of China(Grant No.2012CB955200)+2 种基金the National Natural Science Foundation of China for Excellent Young Scholars(Grant No.41522502)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010303)the National Natural Science Foundation of China(Grant Nos.41575075,91437216 and 91637312)
文摘Previous studies suggest that the atmospheric precursor of E1 Nifio-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole (SPQ). The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode (SAM), the first Pacific-South America (PSA1) mode, and the second Pacific-South America (PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1501500).
文摘Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the research progress on atmospheric electricity achieved in China during 2019-22 is reviewed focusing on the following aspects:(1)lightning detection and location techniques,(2)thunderstorm electricity,(3)lightning forecasting methods and techniques,(4)physical processes of lightning discharge,(5)high energy emissions and effects of thunderstorms on the upper atmosphere,and(6)the effect of aerosol on lightning.
文摘The role of phoretic forces in providing in-cloud and below-cloud scavenging due to falling drop is reviewed by considering published papers dealing with theoretical models, laboratory and field measurements. Theoretical analyses agree that Brownian diffusion appears to dominate drop scavenging of aerosol with radius less than 0.1 μm, and inertial impaction dominates scavenging of aerosol with radius higher than 1 μm. Thus, there is a minimum collection efficiency for particles in the approximate range 0.1 μm - 1 μm, where phoretic forces are felt. Generally speaking, published papers report not uniform evaluations of the contribution of thermo- and diffusiophoretic forces. This disagreement is partially due to the different laboratory and field conditions, and different theoretical approaches.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19060102)Shanghai 2021“Scientific and technological innovation action plan”Natural Science Foundation(Grant No.21ZR1420400)+2 种基金National Natural Science Foundation of China(Grant No.91958201)International Partnership Program of Chinese Academy of Sciences Grant 183311KYSB20200015the National Natural Science Foundation for Young Scientist of China(Grant No.41605079)。
文摘This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS)and MRIAGCM3-2-S(MRI)with respect to tropical cyclone(TC)characteristics over the Western North Pacific(WNP)for the July-October months of 1985-2014.The focus is on investigating the role of the tropical easterly jet over the Western Pacific(WP_TEJ)in modulating the simulation biases in terms of their climatological distribution and interannual variability of WNP TC genesis frequency(TCGF)based on the analysis of the genesis potential index(GPI).Results show that the two models reasonably capture the main TC genesis location,the maximum center of frequency,and track density;however,their biases mainly lie in simulating the intense TCs and TCGF distributions.The MRI better simulates the windpressure relationship(WPR)but overestimates the proportion of super typhoons(SSTYs).At the same time,FGOALS underestimates the WPR and the proportion of SSTYs but better simulates the total WNP TC precipitation.In particular,FGOALS overestimates the TCGF in the northeastern WNP,which is strongly tied to an overestimated WP_TEJ and the enhanced vertical circulation to the north of its entrance region.In contrast,the MRI simulates a weaker WP_TEJ and vertical circulation,leading to a negative TCGF bias in most of the WNP.Both models exhibit comparable capability in simulating the interannual variability of WP_TEJ intensity,but the composite difference of large-scale atmospheric factors between strong and weak WP_TEJ years is overestimated,resulting in larger interannual anomalies of WNP TCGF,especially for FGOALS.Therefore,accurate simulations of the WP_TEJ and the associated oceanic and atmospheric factors are crucial to further improving WNP TC simulations for both models.
基金project of the Ministry of Sciences and Technology of the People’s Republic of China (GYHY200706020)projects of National Natural Science Foundation of China ((40975034, 40505009)project of State Key Laboratory of Severe Weather (2008LASW-A01)
文摘In this study,we derived atmospheric profiles of temperature,moisture,and ozone,along with surface emissivity,skin temperature,and surface pressure,from infrared-sounder radiances under clear sky (cloudless) condition.Clouds were detected objectively using the Atmospheric Infrared Sounder under a relatively low spatial resolution and cloud-mask information from the Moderate Resolution Imaging Spectroradiometer under a high horizontal resolution;this detection was conducted using space matching.Newton’s nonlinear physical iterative solution technique is applied to the radiative transfer equation (RTE) to retrieve temperature profiles,relative humidity profiles,and surface variables simultaneously.This technique is carried out by using the results of an eigenvector regression retrieval as the background profile and using corresponding iterative forms for the weighting functions of temperature and water-vapor mixing ratio.The iterative forms are obtained by applying the variational principle to the RTE.We also compared the retrievals obtained with different types of observations.The results show that the retrieved atmospheric sounding profile has great superiority over other observations by accuracy and resolution.Retrieved profiles can be used to improve the initial conditions of numerical models and used in areas where conventional observations are sparse,such as plateaus,deserts,and seas.
基金supported by the National Natural Science Foundation of China (Grant No. 42192564)Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)the Ministry of Science and Technology of the People's Republic of China (Grant No.2020YFA0608802)。
文摘El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and decaying over the next spring. Several studies have demonstrated that this feature arises as a result of seasonal variation in the growth rate of ENSO as expressed by the sea surface temperature(SST). The bias towards simulating the phase locking of ENSO by many state-of-the-art climate models is also attributed to the unrealistic depiction of the growth rate. In this study, the seasonal variation of SST growth rate in the Ni?o-3.4 region(5°S–5°N, 120°–170°W) is estimated in detail based on the mixed layer heat budget equation and recharge oscillator model during 1981–2020. It is suggested that the consideration of a variable mixed layer depth is essential to its diagnostic process. The estimated growth rate has a remarkable seasonal cycle with minimum rates occurring in spring and maximum rates evident in autumn. More specifically, the growth rate derived from the meridional advection(surface heat flux) is positive(negative) throughout the year. Vertical diffusion generally makes a negative contribution to the evolution of growth rate and the magnitude of vertical entrainment represents the smallest contributor. Analysis indicates that the zonal advective feedback is regulated by the meridional immigration of the intertropical convergence zone, which approaches its southernmost extent in February and progresses to its northernmost location in September, and dominates the seasonal variation of the SST growth rate.
基金supported by the National Natural Science Foundation of China(Grant No.42075015)the Science and Technology Commission of Shanghai Municipality,China(23DZ1204703).
文摘There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.
文摘The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature.
基金National Natural Science Foundation of China(Grant Nos:42150710531,42192551,61827901)supported this study.
文摘Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.
基金supported by the National Natural Science Foundation of China(Grant Nos.42192552,42192551,42150710531,42175016,and 42075072)the Shanghai Typhoon Research Fund(Grant No.TFJJ202207)the Basic Research Fund of CAMS(Grant No.2023Y010)。
文摘This study investigated the effects of upper-level descending inflow(ULDI)associated with inner-eyewall convection on the formation of the moat in tropical cyclones(TCs)with secondary eyewall formation(SEF).In our numerical experiments,a clear moat with SEF occurred in TCs with a significant ULDI,while no SEF occurred in TCs without a significant ULDI.The eyewall convection developed more vigorously in the control run.A ULDI occurred outside the inner-eyewall convection,where it was symmetrically unstable.The ULDI was initially triggered by the diabatic warming released by the inner eyewall and later enhanced by the cooling below the anvil cloud.The ULDI penetrated the outer edge of the inner eyewall with relatively dry air and prevented excessive solid-phase hydrometeors from being advected further outward.It produced extensive sublimation cooling of falling hydrometeors between the eyewall and the outer convection.The sublimation cooling resulted in negative buoyancy and further induced strong subsidence between the eyewall and the outer convection.As a result,a clear moat was generated.Development of the moat in the ongoing SEF prevented the outer rainband from moving farther inward,helping the outer rainband to symmetrize into an outer eyewall.In the sensitivity experiment,no significant ULDI formed since the eyewall convection was weaker,and the eyewall anvil developed relatively lower,meaning the formation of a moat and thus an outer eyewall was less likely.This study suggests that a better-represented simulation of inner-eyewall convective structures and distribution of the solid-phase hydrometeors is important to the prediction of SEF.
基金supported by the Shanghai Sailing Program (Grant No. 22YF1442000)the Key Laboratory of Middle Atmosphere and Global Environment Observation(Grant No. LAGEO-2021-07)+1 种基金the National Natural Science Foundation of China (Grant No. 41975035)Jiaxing University (Grant Nos. 00323027AL and CD70522035)。
文摘Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.
文摘In this paper,we analyze how statistical modelling of extreme precipitation indices can support urban planners in the analysis and classification of the level of climate sensitivity of the territory and in the subsequent definition of sustainable adaptive planning and design choices.These activities are part of a research project that addresses the issue of climate change from the urban planning perspective to identify solutions to current and future environmental challenges,increasing the climate resilience of infrastructures and communities in urban,rural and coastal areas.These research activities are based on the desire to promote integration between the approaches commonly adopted by urban planners and climate specialists to plan adequate joint risk reduction strategies.As part of this study,the focus will be on the risks produced by the greater frequency and intensity of floods,assessed by the IPCC(Intergovernmental Panel on Climate Change)as one of the key risks for Europe.Specifically,our attention focuses on pluvial flooding,proposing the definition of a statistical modelling of indices related to extreme precipitation and its application to the context of the Calabria Region,in Italy.The indices are recommended by the ETCCDI(Expert Team on Climate Change Detection and Indices)and elaborated starting from official historical data recorded by 146 telemetry active rain gauges,disseminated in the experimentation context.
基金supported by National Key R&D Program of China (Grant No. 2016YFA0600601)the National Natural Science Foundation of China (Grant Nos. 41605027, 41721004, 41530530 and 41731173)+1 种基金the Leading Talents of Guangdong Province Program, the Pioneer Hundred Talents Program of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities
文摘This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-extending,resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific(WTP), which was unrelated to ENSO and manifested its own individual effect.The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer(with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly(SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC,contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA.
基金support from the National Natural Science Foundation of China(Grant Nos:41790475,42005046,and 41790473)。
文摘Three extreme cold events invaded China during the early winter period between December 2020 to mid-January 2021 and caused drastic temperature drops,setting new low-temperature records at many stations during 6−8 January 2021.These cold events occurred under background conditions of low Arctic sea ice extent and a La Niña event.This is somewhat expected since the coupled effect of large Arctic sea ice loss in autumn and sea surface temperature cooling in the tropical Pacific usually favors cold event occurrences in Eurasia.Further diagnosis reveals that the first cold event is related to the southward movement of the polar vortex and the second one is related to a continent-wide ridge,while both the southward polar vortex and the Asian blocking are crucial for the third event.Here,we evaluate the forecast skill for these three events utilizing the operational forecasts from the ECMWF model.We find that the third event had the highest predictability since it achieves the best skill in forecasting the East Asian cooling among the three events.Therefore,the predictability of these cold events,as well as their relationships with the atmospheric initial conditions,Arctic sea ice,and La Niña deserve further investigation.
基金supported by the National Natural Science Foundation of China[grant numbers 41421004 and 41210007]the International Innovation Team project of the Chinese Academy of Sciences entitled ‘High Resolution Numerical Simulation of Regional Environment’
文摘The data of several rainfall products, including those estimated from satellite measurements and those forecasted via numerical weather modeling, for a severe debris-flow event in Zhouqu, Northwest China, are compared and analyzed in this paper. The satellite products, including CPC MORPHing technique(CMORPH), TMPA-RT, and PERSIANN are all near-real-time retrieved with high temporal and spatial resolutions. The numerical weather model used in this paper for precipitation forecasting is WRF. The results show that all three satellite products can basically reproduce the rainfall pattern, distribution, timing, scale, and extreme values of the event, compared with gauge data. Their temporal and spatial correlation coefficients with gauge data are as high as about 0.6, which is statistically significant at 0.01 level. The performance of the forecasted results modeled with different spatial resolutions are not as good as the satellite-estimated results, although their correlation coefficients are still statistically significant at 0.05 level. From the total rainfall and extreme value time series for the domain, it is clear that, from the grid-to-grid perspective, the passive microwave-based CMORPH and TRMM products are more accurate than the infrared-based PERSIANN, while PERSIANN performs very well from the general point of view, especially when considering the whole domain or the whole convective precipitation system. The forecasted data — especially the highest resolution model domain data — are able to represent the total or mean precipitation very well in the research domain, while for extreme values the errors are large. This study suggests that satellite-retrieved and model-forecasted rainfall data are a useful complement to gauge data, especially for areas without gauge stations and areas not covered by weather radars.
基金the National Natural Science Foundation of China(Grant No.41790475).
文摘The linkage between the Arctic and midlatitudes has received much attention recently due to the rapidly changing climate.Many investigations have been conducted to reveal the relationship between the Arctic and Eurasian extreme events from the perspective of climatological statistics.As a prediction source for extreme events in Eurasia,Arctic conditions are crucial for extreme event predictions.Therefore,it is urgent to explore the Arctic influence on the predictability of Eurasian extreme events due to the large uncertainties in Arctic conditions.Considering the sensitivity and nonlinearity of the atmospheric circulations in midlatitude to Arctic conditions,it is necessary to investigate the Arctic influences on Eurasian extreme weather events in case studies at weather time scales.Previous studies indicate that only perturbations in specific patterns have fast growth.Thus,the conditional nonlinear optimal perturbation approach is recommended for exploring the uncertainties in Arctic initial and boundary conditions and their synergistic effect on Eurasian extreme events.Moreover,the mechanism for extreme event formation may differ in different cases.Therefore,more extreme cases should be investigated to reach robust conclusions.
基金supported by the National Natural Scientific Foundation of China (Grant Nos. 41230420 and 41576015)the Qingdao National Laboratory for Marine Science and Technology (Grant No. QNLM2016ORP0107)+2 种基金the NSFC Innovative Group (Grant No. 41421005)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1606402)the National Programme on Global Change and Air–Sea Interaction (Grant No. GASI-IPOVAI-06)
文摘Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kuroshio large meander(LM) path, and the growth mechanism of optimal initial errors was revealed. For each LM event, two types of initial error(denoted as CNOP1 and CNOP2) were obtained. Their large amplitudes were found located mainly in the upper 2500 m in the upstream region of the LM, i.e., southeast of Kyushu. Furthermore, we analyzed the patterns and nonlinear evolution of the two types of CNOP. We found CNOP1 tends to strengthen the LM path through southwestward extension. Conversely,CNOP2 has almost the opposite pattern to CNOP1, and it tends to weaken the LM path through northeastward contraction.The growth mechanism of optimal initial errors was clarified through eddy-energetics analysis. The results indicated that energy from the background field is transferred to the error field because of barotropic and baroclinic instabilities. Thus, it is inferred that both barotropic and baroclinic processes play important roles in the growth of CNOP-type optimal initial errors.