In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as th...In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.展开更多
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ...In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.展开更多
In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task ...In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG).展开更多
Purpose–With the yearly increase of mileage and passenger volume in China’s high-speed railway,the problems of traditional paper railway tickets have become increasingly prominent,including complexity of business ha...Purpose–With the yearly increase of mileage and passenger volume in China’s high-speed railway,the problems of traditional paper railway tickets have become increasingly prominent,including complexity of business handling process,low efficiency of ticket inspection and high cost of usage and management.This paper aims to make extensive references to successful experiences of electronic ticket applications both domestically and internationally.The research on key technologies and system implementation of railway electronic ticket with Chinese characteristics has been carried out.Design/methodology/approach–Research in key technologies is conducted including synchronization technique in distributed heterogeneous database system,the grid-oriented passenger service record(PSR)data storage model,efficient access to massive PSR data under high concurrency condition,the linkage between face recognition service platforms and various terminals in large scenarios,and two-factor authentication of the e-ticket identification code based on the key and the user identity information.Focusing on the key technologies and architecture the of existing ticketing system,multiple service resources are expanded and developed such as electronic ticket clusters,PSR clusters,face recognition clusters and electronic ticket identification code clusters.Findings–The proportion of paper ticket printed has dropped to 20%,saving more than 2 billion tickets annually since the launch of the application of E-ticketing nationwide.The average time for passengers to pass through the automatic ticket gates has decreased from 3 seconds to 1.3 seconds,significantly improving the efficiency of passenger transport organization.Meanwhile,problems of paper ticket counterfeiting,reselling and loss have been generally eliminated.Originality/value–E-ticketing has laid a technical foundation for the further development of railway passenger transport services in the direction of digitalization and intelligence.展开更多
Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in Chi...Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in China,it is necessary to involve the theory of RM into the operation and decision of railway passenger transport.Design/methodology/approach–This paper proposes the theory and framework of generalized RM of railway passenger transport(RMRPT),and the thoughts and methods of the main techniques in RMRPT,involving demand forecasting,line planning,inventory control,pricing strategies and information systems,are all studied and elaborated.The involved methods and techniques provide a sequential process to help with the decision-making for each stage of RMRPT.The corresponding techniques are integrated into the information system to support practical businesses in railway passenger transport.Findings–The combination of the whole techniques devotes to railway benefit improvement and transit resource utilization and has been applied into the practical operation and organization of railway passenger transport.Originality/value–The development of RMRPT would provide theoretical and technical support for the improvement of service quality as well as railway benefits and efficiency.展开更多
Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affect...Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.展开更多
With the proliferation of the Internet of Things(IoT),various services are emerging with totally different features and requirements,which cannot be supported by the current fifth generation of mobile cellular network...With the proliferation of the Internet of Things(IoT),various services are emerging with totally different features and requirements,which cannot be supported by the current fifth generation of mobile cellular networks(5G).The future sixth generation of mobile cellular networks(6G)is expected to have the capability to support new and unknown services with changing requirements.Hence,in addition to enhancing its capability by 10–100 times compared with 5G,6G should also be intelligent and open to adapt to the ever-changing services in the IoT,which requires a convergence of Communication,Computing and Caching(3C).Based on the analysis of the requirements of new services for 6G,this paper identifies key enabling technologies for an intelligent and open 6G network,all featured with 3C convergence.These technologies cover fundamental and emerging topics,including 3C-based spectrum management,radio channel construction,delay-aware transmission,wireless distributed computing,and network self-evolution.From the detailed analysis of these 3C-based technologies presented in this paper,we can see that although they are promising to enable an intelligent and open 6G,more efforts are needed to realize the expected 6G network.展开更多
With analysis of limitations Trusted Computing Group (TCG) has encountered, we argued that virtual machine monitor (VMM) is the appropriate architecture for implementing TCG specification. Putting together the VMM...With analysis of limitations Trusted Computing Group (TCG) has encountered, we argued that virtual machine monitor (VMM) is the appropriate architecture for implementing TCG specification. Putting together the VMM architecture, TCG hardware and application-oriented "thin" virtual machine (VM), Trusted VMM-based security architecture is present in this paper with the character of reduced and distributed trusted computing base (TCB). It provides isolation and integrity guarantees based on which general security requirements can be satisfied.展开更多
Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on ...Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on the investigation of the requirements of railway real estate management and operation,combined with Beidou positioning,GIS(Geographic Information System),multi-source data fusion and other cutting-edge technologies,this paper puts forward the multi-dimensional dynamic statistical method of real estate information,the identification method of railway land occupation and the comprehensive evaluation method of real estate development and utilization potential,and build the railway real estate supervision and operation platform,design the function of the platform,so as to provide intelligent solutions for the railway real estate operation.展开更多
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process...A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.展开更多
The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents...The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents an architecture designed to improve the speed and power limitations of high-performance computing systems using superconducting technology.Since superconducting microprocessors,which operate at cryogenic temperatures,require support from semiconductor cir-cuits,the proposed design utilizes the von Neumann architecture with a superconducting RSFQ mi-croprocessor,cryogenic semiconductor memory,a room temperature field programmable gate array(FPGA)controller,and a host computer for input/output.Additionally,the paper introduces two key circuit designs:a start/stop controllable superconducting clock generator and an asynchronous communication interface between the RSFQ and semiconductor chips used to implement the control system.Experimental results demonstrate that the proposed design is feasible and effective,provi-ding valuable insights for future superconducting computer systems.展开更多
With the increasing demand of computational power in artificial intelligence(AI)algorithms,dedicated accelerators have become a necessity.However,the complexity of hardware architectures,vast design search space,and c...With the increasing demand of computational power in artificial intelligence(AI)algorithms,dedicated accelerators have become a necessity.However,the complexity of hardware architectures,vast design search space,and complex tasks of accelerators have posed significant challenges.Tra-ditional search methods can become prohibitively slow if the search space continues to be expanded.A design space exploration(DSE)method is proposed based on transfer learning,which reduces the time for repeated training and uses multi-task models for different tasks on the same processor.The proposed method accurately predicts the latency and energy consumption associated with neural net-work accelerator design parameters,enabling faster identification of optimal outcomes compared with traditional methods.And compared with other DSE methods by using multilayer perceptron(MLP),the required training time is shorter.Comparative experiments with other methods demonstrate that the proposed method improves the efficiency of DSE without compromising the accuracy of the re-sults.展开更多
Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by...Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.展开更多
Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo...Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.展开更多
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca...Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.展开更多
In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.Howev...In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.展开更多
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o...The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.展开更多
Quantized training has been proven to be a prominent method to achieve deep neural network training under limited computational resources.It uses low bit-width arithmetics with a proper scaling factor to achieve negli...Quantized training has been proven to be a prominent method to achieve deep neural network training under limited computational resources.It uses low bit-width arithmetics with a proper scaling factor to achieve negligible accuracy loss.Cambricon-Q is the ASIC design proposed to efficiently support quantized training,and achieves significant performance improvement.However,there are still two caveats in the design.First,Cambricon-Q with different hardware specifications may lead to different numerical errors,resulting in non-reproducible behaviors which may become a major concern in critical applications.Second,Cambricon-Q cannot leverage data sparsity,where considerable cycles could still be squeezed out.To address the caveats,the acceleration core of Cambricon-Q is redesigned to support fine-grained irregular data processing.The new design not only enables acceleration on sparse data,but also enables performing local dynamic quantization by contiguous value ranges(which is hardware independent),instead of contiguous addresses(which is dependent on hardware factors).Experimental results show that the accuracy loss of the method still keeps negligible,and the accelerator achieves 1.61×performance improvement over Cambricon-Q,with about 10%energy increase.展开更多
Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other meth...Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.展开更多
Networks are composed with servers and rather larger amounts of terminals and most menace of attack and virus come from terminals. Eliminating malicious code and ac cess or breaking the conditions only under witch att...Networks are composed with servers and rather larger amounts of terminals and most menace of attack and virus come from terminals. Eliminating malicious code and ac cess or breaking the conditions only under witch attack or virus can be invoked in those terminals would be the most effec tive way to protect information systems. The concept of trusted computing was first introduced into terminal virus immunity. Then a model of security domain mechanism based on trusted computing to protect computers from proposed from abstracting the general information systems. The principle of attack resistant and venture limitation of the model was demonstrated by means of mathematical analysis, and the realization of the model was proposed.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB2600405).
文摘In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.
基金The Natural Science Foundation of Henan Province(No.232300421097)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.23HASTIT019,24HASTIT038)+2 种基金the China Postdoctoral Science Foundation(No.2023T160596,2023M733251)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)the Song Shan Laboratory Foundation(No.YYJC022022003)。
文摘In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.
文摘In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG).
基金supported by the National Key R&D Program of China(No.2020YFF0304101).
文摘Purpose–With the yearly increase of mileage and passenger volume in China’s high-speed railway,the problems of traditional paper railway tickets have become increasingly prominent,including complexity of business handling process,low efficiency of ticket inspection and high cost of usage and management.This paper aims to make extensive references to successful experiences of electronic ticket applications both domestically and internationally.The research on key technologies and system implementation of railway electronic ticket with Chinese characteristics has been carried out.Design/methodology/approach–Research in key technologies is conducted including synchronization technique in distributed heterogeneous database system,the grid-oriented passenger service record(PSR)data storage model,efficient access to massive PSR data under high concurrency condition,the linkage between face recognition service platforms and various terminals in large scenarios,and two-factor authentication of the e-ticket identification code based on the key and the user identity information.Focusing on the key technologies and architecture the of existing ticketing system,multiple service resources are expanded and developed such as electronic ticket clusters,PSR clusters,face recognition clusters and electronic ticket identification code clusters.Findings–The proportion of paper ticket printed has dropped to 20%,saving more than 2 billion tickets annually since the launch of the application of E-ticketing nationwide.The average time for passengers to pass through the automatic ticket gates has decreased from 3 seconds to 1.3 seconds,significantly improving the efficiency of passenger transport organization.Meanwhile,problems of paper ticket counterfeiting,reselling and loss have been generally eliminated.Originality/value–E-ticketing has laid a technical foundation for the further development of railway passenger transport services in the direction of digitalization and intelligence.
基金China State Railway Group Co.,Ltd(No.K2023X030)China Academy of Railway Sciences Corporation Limited(No.2021YJ017).
文摘Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in China,it is necessary to involve the theory of RM into the operation and decision of railway passenger transport.Design/methodology/approach–This paper proposes the theory and framework of generalized RM of railway passenger transport(RMRPT),and the thoughts and methods of the main techniques in RMRPT,involving demand forecasting,line planning,inventory control,pricing strategies and information systems,are all studied and elaborated.The involved methods and techniques provide a sequential process to help with the decision-making for each stage of RMRPT.The corresponding techniques are integrated into the information system to support practical businesses in railway passenger transport.Findings–The combination of the whole techniques devotes to railway benefit improvement and transit resource utilization and has been applied into the practical operation and organization of railway passenger transport.Originality/value–The development of RMRPT would provide theoretical and technical support for the improvement of service quality as well as railway benefits and efficiency.
基金National Natural Science Foundation of China High Speed Rail Joint Fund(U2268217)。
文摘Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.
基金This work is supported by the National Natural Science Youth Fund of China granted by No.61901452 and Innovative Project of ICT/CAS granted by No.20196110
文摘With the proliferation of the Internet of Things(IoT),various services are emerging with totally different features and requirements,which cannot be supported by the current fifth generation of mobile cellular networks(5G).The future sixth generation of mobile cellular networks(6G)is expected to have the capability to support new and unknown services with changing requirements.Hence,in addition to enhancing its capability by 10–100 times compared with 5G,6G should also be intelligent and open to adapt to the ever-changing services in the IoT,which requires a convergence of Communication,Computing and Caching(3C).Based on the analysis of the requirements of new services for 6G,this paper identifies key enabling technologies for an intelligent and open 6G network,all featured with 3C convergence.These technologies cover fundamental and emerging topics,including 3C-based spectrum management,radio channel construction,delay-aware transmission,wireless distributed computing,and network self-evolution.From the detailed analysis of these 3C-based technologies presented in this paper,we can see that although they are promising to enable an intelligent and open 6G,more efforts are needed to realize the expected 6G network.
基金Supported by the National Program on Key Basic Re-search Project of China (G1999035801)
文摘With analysis of limitations Trusted Computing Group (TCG) has encountered, we argued that virtual machine monitor (VMM) is the appropriate architecture for implementing TCG specification. Putting together the VMM architecture, TCG hardware and application-oriented "thin" virtual machine (VM), Trusted VMM-based security architecture is present in this paper with the character of reduced and distributed trusted computing base (TCB). It provides isolation and integrity guarantees based on which general security requirements can be satisfied.
基金supported by the Scientific and Technological Research and Development Plan of China Railway Beijing Group Co.,Ltd.(2022CT01).
文摘Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on the investigation of the requirements of railway real estate management and operation,combined with Beidou positioning,GIS(Geographic Information System),multi-source data fusion and other cutting-edge technologies,this paper puts forward the multi-dimensional dynamic statistical method of real estate information,the identification method of railway land occupation and the comprehensive evaluation method of real estate development and utilization potential,and build the railway real estate supervision and operation platform,design the function of the platform,so as to provide intelligent solutions for the railway real estate operation.
基金Supported by the Industrial Internet Innovation and Development Project of Ministry of Industry and Information Technology (No.GHBJ2004)。
文摘A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA18000000)the National Natural Science Foundation of China(No.61732018,61872335).
文摘The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents an architecture designed to improve the speed and power limitations of high-performance computing systems using superconducting technology.Since superconducting microprocessors,which operate at cryogenic temperatures,require support from semiconductor cir-cuits,the proposed design utilizes the von Neumann architecture with a superconducting RSFQ mi-croprocessor,cryogenic semiconductor memory,a room temperature field programmable gate array(FPGA)controller,and a host computer for input/output.Additionally,the paper introduces two key circuit designs:a start/stop controllable superconducting clock generator and an asynchronous communication interface between the RSFQ and semiconductor chips used to implement the control system.Experimental results demonstrate that the proposed design is feasible and effective,provi-ding valuable insights for future superconducting computer systems.
基金the National Key R&D Program of China(No.2018AAA0103300)the National Natural Science Foundation of China(No.61925208,U20A20227,U22A2028)+1 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-029)the Youth Innovation Promotion Association Chinese Academy of Sciences.
文摘With the increasing demand of computational power in artificial intelligence(AI)algorithms,dedicated accelerators have become a necessity.However,the complexity of hardware architectures,vast design search space,and complex tasks of accelerators have posed significant challenges.Tra-ditional search methods can become prohibitively slow if the search space continues to be expanded.A design space exploration(DSE)method is proposed based on transfer learning,which reduces the time for repeated training and uses multi-task models for different tasks on the same processor.The proposed method accurately predicts the latency and energy consumption associated with neural net-work accelerator design parameters,enabling faster identification of optimal outcomes compared with traditional methods.And compared with other DSE methods by using multilayer perceptron(MLP),the required training time is shorter.Comparative experiments with other methods demonstrate that the proposed method improves the efficiency of DSE without compromising the accuracy of the re-sults.
文摘Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.
基金supported by Jiangsu Provincial Key Research and Development Program (No.BE20210132)the Zhejiang Provincial Key Research and Development Program (No.2021C01040)the team of S-SET
文摘Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.
基金supported by the National Natural Science Foundation of China-China State Railway Group Co.,Ltd.Railway Basic Research Joint Fund (Grant No.U2268217)the Scientific Funding for China Academy of Railway Sciences Corporation Limited (No.2021YJ183).
文摘Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.
基金supported by a grant fromthe National Key R&DProgram of China.
文摘In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.
基金supported by Systematic Major Project of China State Railway Group Corporation Limited(Grant Number:P2023W002).
文摘The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.
基金the National Key Research and Devecopment Program of China(No.2022YFB4501601)the National Natural Science Foundation of China(No.62102398,U20A20227,62222214,62002338,U22A2028,U19B2019)+1 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-029)Youth Innovation Promotion Association Chinese Academy of Sciences。
文摘Quantized training has been proven to be a prominent method to achieve deep neural network training under limited computational resources.It uses low bit-width arithmetics with a proper scaling factor to achieve negligible accuracy loss.Cambricon-Q is the ASIC design proposed to efficiently support quantized training,and achieves significant performance improvement.However,there are still two caveats in the design.First,Cambricon-Q with different hardware specifications may lead to different numerical errors,resulting in non-reproducible behaviors which may become a major concern in critical applications.Second,Cambricon-Q cannot leverage data sparsity,where considerable cycles could still be squeezed out.To address the caveats,the acceleration core of Cambricon-Q is redesigned to support fine-grained irregular data processing.The new design not only enables acceleration on sparse data,but also enables performing local dynamic quantization by contiguous value ranges(which is hardware independent),instead of contiguous addresses(which is dependent on hardware factors).Experimental results show that the accuracy loss of the method still keeps negligible,and the accelerator achieves 1.61×performance improvement over Cambricon-Q,with about 10%energy increase.
基金supported by the National Natural Science Foundation of China(61732018,61872335,61802367,61876215)the Strategic Priority Research Program of Chinese Academy of Sciences(XDC05000000)+1 种基金Beijing Academy of Artificial Intelligence(BAAI),the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing(2019A07)the Open Project of Zhejiang Laboratory,and a grant from the Institute for Guo Qiang,Tsinghua University.Recommended by Associate Editor Long Chen.
文摘Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.
基金Supported by the National High-TechnologyResearch and Development Programof China (2002AA1Z2101)
文摘Networks are composed with servers and rather larger amounts of terminals and most menace of attack and virus come from terminals. Eliminating malicious code and ac cess or breaking the conditions only under witch attack or virus can be invoked in those terminals would be the most effec tive way to protect information systems. The concept of trusted computing was first introduced into terminal virus immunity. Then a model of security domain mechanism based on trusted computing to protect computers from proposed from abstracting the general information systems. The principle of attack resistant and venture limitation of the model was demonstrated by means of mathematical analysis, and the realization of the model was proposed.