Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic ...Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic clouds. The CloudSat satellite launched in 2006 with a 94GHz Cloud Profiling Radar (CPR) may contribute to close this gap. Here we compare one of the key parameters, the cloud liquid water path (LWP) retrieved from CloudSat observations and from microwave radiometer (MWR) data taken during the ASCOS (Arctic Summer Cloud Ocean Study) cruise of the research vessel Oden from August to September 2008. Over the 45 days of the ASCOS cruise, collocations closer than 3 h and 100 km were found in only 9 d, and collocations closer than 1 h and 30 km in only 2 d. The poor correlations in the scatter plots of the two LWP retrievals can be explained by the patchiness of the cloud cover in these two days (August 5th and September 7th), as confirmed by coincident MODIS (Moderate-resolution Imaging Spectroradiome- ter) images. The averages of Oden-observed LWP values are systematically higher (40-70 g m-2) than the corresponding CloudSat observations (0-50 g m2). These are cases of generally low LWP with presumably small droplets, and may be explained by the little sensitivity of the CPR to small droplets or by the surface clutter.展开更多
Using a microwave radiative transfer model, atmospheric sounding profiles, satellite brightness temperatures, and some surface observed measurements under cloud-free conditions, surface emissivities at the frequencies...Using a microwave radiative transfer model, atmospheric sounding profiles, satellite brightness temperatures, and some surface observed measurements under cloud-free conditions, surface emissivities at the frequencies of TRMM/TMI (Tropical Rainfall Measuring Mission Microwave Imager) at Shouxian in HUBEX (Huaihe River Basin Energy and Water Cycle Experiment) are retrieved. Compared to the microwave surface emissivities with changing conditions of the surface, it is found that the microwave emissivities have some sensitive variability with the conditions of the surface, and the variability is reasonable. In the calculation, the surface air temperatures are assumed to equal the surface skin temperatures, and only the emissivity at Shouxian is calculated; the calculation of the emissivities over the region of HUBEX needs more measurements.展开更多
The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes i...The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes in the Badain Jaran Desert using ground-penetrating radar (GPR).We processed and analyzed the GPR data and investigated the feasibility of using integrated GPR and sedimentological data to reconstruct dunes structure,sedimentary environment and geomorphological evolution.The results show that the internal structures of star dune and transverse dune represent various stages of mega-dune evolution: the main deposition processes of mega-dune are similar to those of transverse dunes but have a more complicated mechanism of sand transport and deposition because of the superimposition of dunes;the upper section of the mega-dune has a structure similar to that of star dune,with vertical aggradations on top.Diffraction hyperbolae in the GPR profile indicates that the presence of ancient dunes characterized by calcareous cementation layers is involved in the maintenance of mega-dunes,and water levels,shown by continuous,sub-horizontal GPR reflections,are supposed to be closely related to mega-dunes and the interdune lakes.Outcrop of wet sand and horizontal stratifications on the GPR image indicate moisture potentials with different levels inside mega-dunes.The multiplex geomorphology in the Badain Jaran Desert is the result of global climatic undulation,the unique geographical location,the geological structural features,etc.展开更多
An algorithm to detect tropical deep convective clouds and deep convective overshootings based on the measurements from the three water vapor channels (1833GHz± 1GHz, 183.3GHz±3GHz and 183.3GHz±7GHz) ...An algorithm to detect tropical deep convective clouds and deep convective overshootings based on the measurements from the three water vapor channels (1833GHz± 1GHz, 183.3GHz±3GHz and 183.3GHz±7GHz) of the Advanced Microwave Sounding Unit-B (AMSU-B) is presented. This algorithm is an improved version of the method of Hong et al. (2005). The proposed procedure is based on the statistical analysis of seven years' (2001-2007) measurements from AMSU-B on NOAA-16. From the 1-d histograms of the brightness temperature of the three water vapor channels and the 2-d histograms of the brightness temperature dif- ference between these channels, new thresholds for brightness temperature differences and the brigb.tness temperature of chamM 18 (183.3 GHz 4-1 GHz) are suggested. The new algorithm is employed to investigate the mean distribution of tropical deep convective clouds and convective overshootings from 30'S to 30'N for the years 2001 to 2007. The major concentration of deep convective clouds and convective overshootings is found over the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), tropical Africa, South America, the Indian Ocean and Indonesia ruth an average fraction of 0.4%. In terms of these clouds we identity, the secondary Intertropical Convergence Zone located in the eastern South Pacific and parallel to the main ITCZ in the North Pacific. The convective overshooting is more frequently observed over land than over the ocean.展开更多
The Antarctic,including the continent of Antarctica and the Southern Ocean,is a critically important part of the Earth system.Research in Antarctic meteorology and climate has always been a challenging endeavor.Studyi...The Antarctic,including the continent of Antarctica and the Southern Ocean,is a critically important part of the Earth system.Research in Antarctic meteorology and climate has always been a challenging endeavor.Studying and predicting weather patterns in the Antarctic are important for understanding their role in local-to-global processes and facilitating field studies and logistical operations in the Antarctic(e.g.,Walsh et al.,2018).Studies of climate change in the Antarctic are comparatively neglected compared to those of the Arctic.However,significant climate changes have occurred in the Antarctic in the past several decades,i.e.,a strong warming over the Antarctic Peninsula even with a recent minor cooling,a deepening of the Amundsen Sea low,a rapid warming of the upper ocean north of the circumpolar current,an increase of Antarctic sea ice since the late 1970s followed by a recent rapid decrease,and an accelerated ice loss from the Antarctic ice shelf/sheet since the late 1970s(e.g.,Turner et al.,2005;Raphael et al.,2016;Sallée,2018;Parkinson,2019;Rignot et al.,2019).Investigating recent climate change in the Antarctic and the underlying mechanisms are important for predicting future climate change and providing information to policymakers.展开更多
Arctic Ocean gateway fluxes play a crucial role in linking the Arctic with the global ocean and affecting climate and marine ecosystems.We reviewed past studies on Arctic-Subarctic ocean linkages and examined their ch...Arctic Ocean gateway fluxes play a crucial role in linking the Arctic with the global ocean and affecting climate and marine ecosystems.We reviewed past studies on Arctic-Subarctic ocean linkages and examined their changes and driving mechanisms.Our review highlights that radical changes occurred in the inflows and outflows of the Arctic Ocean during the 2010s.Specifically,the Pacific inflow temperature in the Bering Strait and Atlantic inflow temperature in the Fram Strait hit record highs,while the Pacific inflow salinity in the Bering Strait and Arctic outflow salinity in the Davis and Fram straits hit record lows.Both the ocean heat convergence from lower latitudes to the Arctic and the hydrological cycle connecting the Arctic with Subarctic seas were stronger in 2000-2020 than in 1980-2000.CMIP6 models project a continuing increase in poleward ocean heat convergence in the 21st century,mainly due to warming of inflow waters.They also predict an increase in freshwater input to the Arctic Ocean,with the largest increase in freshwater export expected to occur in the Fram Strait due to both increased ocean volume export and decreased salinity.Fram Strait sea ice volume export hit a record low in the 2010s and is projected to continue to decrease along with Arctic sea ice decline.We quantitatively attribute the variability of the volume,heat,and freshwater transports in the Arctic gateways to forcing within and outside the Arctic based on dedicated numerical simulations and emphasize the importance of both origins in driving the variability.展开更多
In the Review Article"A Review of Arctic–Subarctic Ocean Linkages:Past Changes,Mechanisms,and Future Projections"[1],the x-axis in Figure 4B and y-axis in Figure 8F were skewed during picture beautification...In the Review Article"A Review of Arctic–Subarctic Ocean Linkages:Past Changes,Mechanisms,and Future Projections"[1],the x-axis in Figure 4B and y-axis in Figure 8F were skewed during picture beautification by an artist.These errors did not affect the conclusions of the paper.Figures 4B and 8F have now been corrected in the PDF and HTML(full text).展开更多
Satellite derived NO2 column data have been used to study Chinese national fossil fuel consumption and pollutant emissions.Based on NO 2 retrievals from two satellites (GOME and SCIAMACHY) for 1996-2010,we analyzed th...Satellite derived NO2 column data have been used to study Chinese national fossil fuel consumption and pollutant emissions.Based on NO 2 retrievals from two satellites (GOME and SCIAMACHY) for 1996-2010,we analyzed the characteristics and evolution of regional pollution related to NO x emissions in China.Satellite observations indicated that the highly polluted regions were expanding.Anthropogenic emission dominated areas have expanded from the east to central and western China,and new highly polluted regions have formed throughout the nation.Bottom-up emission estimates suggested a 133% increase in anthropogenic NOx emissions in East Central China during 1996 to 2010,which was lower than the 184% increase of the NO2 columns measured by the satellites.We found that growth rates of NOx emissions have slowed in Chinese megacities over recent years,in contrast to which,the NOx emissions were soaring in medium-sized cities,indicating that strict controls of NOx emissions from coal-fired facilities are required in China.展开更多
A revised Landsat Image Mosaic of Antarctica (LIMA) is presented, using the 1073 multi-band scenes of the original Land- sat-7 ETM+ LIMA image collection available at the United States Geological Survey (USGS: h...A revised Landsat Image Mosaic of Antarctica (LIMA) is presented, using the 1073 multi-band scenes of the original Land- sat-7 ETM+ LIMA image collection available at the United States Geological Survey (USGS: http://lima.usgs.gov/). Three improvements have been applied during the data processing: (1) DN saturation is adjusted by adopting a linear regression, which has a lower root mean square error than the ratio regression used by LIMA; (2) solar elevation angle is calculated using pixel-level latitude/longitude and the acquisition time and date of the central pixel of the scene, improving slightly upon the bi- linear interpolation of the solar elevation angles of scene comers applied in LIMA; and (3) two additional image bands, Band 5 and Band 7, are sharpened using the panchromatic band (Band 8) and a Gram-Schmidt Spectral Sharpening algorithm to more easily distinguish snow, cloud and exposed rocks. The final planetary reflectance product is stored in 16-bit bands to preserve the full radiometric content of the scenes. A comparative statistical analysis among 12 sample regions indicates that the new mosaic has enhanced visual qualities, information entropy, and information content for land cover classification relative to LIMA.展开更多
This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial an...This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial and temporal dependencies between observations.The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO_(2),and obtains global land maps of XCO_(2),with a spatial grid resolution of 1°latitude by 1°longitude and temporal resolution of 3 days.We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways:(1)in cross-validation,the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations,(2)in comparison with ground truth provided by the Total Carbon Column Observing Network(TCCON),the predicted XCO_(2)time series and those from TCCON sites are in good agreement,with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and(3)in comparison with model simulations,the spatio-temporal variability of XCO_(2)between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent.The generated mapping XCO_(2)data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.展开更多
Currently, modeling studies tend to significantly underestimate observed space-based glyoxal (CHOCHO) vertical column densities (VCDs), implying the existence of missing sources of giyoxal. Several recent studies ...Currently, modeling studies tend to significantly underestimate observed space-based glyoxal (CHOCHO) vertical column densities (VCDs), implying the existence of missing sources of giyoxal. Several recent studies suggest that the emissions of aromatic compounds and molar yields of glyoxal in the chemical mechanisms may both be underestimated, which can affect the simulated glyoxal concentrations. In this study, the influences of these two factors on glyoxal amounts over China were investigated using the RAMS-CMAQ modeling system for January and July 2014. Four sensitivity simulations were performed, and the results were compared to satellite observations. These results demonstrated significant impacts on glyoxal concentrations from these two factors. In case 1, where the emissions of aromatic compounds were increased three-fold, improvements to glyoxal VCDs were seen in high anthropogenic emissions regions. In case 2, where molar yields of glyoxal from isoprene were increased five-fold, the resulted concentrations in July were B-B-fold higher, achieving closer agreement between the modeled and measured glyoxal VCDs. The combined changes from both cases 1 and 2 were applied in case B, and the model succeeded in further reducing the underestimations of glyoxal VCDs. However, the results over most of the regions with pronounced anthropogenic emissions were still underestimated. So the molar yields of giyoxal from anthropogenic precursors were considered in case 4. With these additional mole yield changes (a two-fold increase), the improved concentrations agreed better with the measurements in regions of the lower reaches of the Yangtze River and Yellow River in January but not in July.展开更多
Rapid declines in Arctic sea ice have captured attention and pose significant challenges to a variety of stakeholders. There is a rising demand for Arctic sea ice prediction at daily to seasonal time scales, which is ...Rapid declines in Arctic sea ice have captured attention and pose significant challenges to a variety of stakeholders. There is a rising demand for Arctic sea ice prediction at daily to seasonal time scales, which is partly a sea ice initial condition problem. Thus, a multivariate data assimilation that integrates sea ice observations to generate realistic and skillful model initialization is needed to improve predictive skill of Arctic sea ice. Sea ice data assimilation is a relatively new research area. In this review paper, we focus on two challenges for implementing multivariate data assimilation systems for sea ice forecast. First, to address the challenge of limited spatiotemporal coverage and large uncertainties of observations, we discuss sea ice parameters derived from satellite remote sensing that(1) have been utilized for improved model initialization, including concentration, thickness and drift, and(2) are currently under development with the potential for enhancing the predictability of Arctic sea ice, including melt ponds and sea ice leads. Second, to strive to generate the ‘‘best" estimate of sea ice initial conditions by combining model simulations/forecasts and observations, we review capabilities and limitations of different data assimilation techniques that have been developed and used to assimilate observed sea ice parameters in dynamical models.展开更多
Antarctica plays a key role in global energy balance and sea level change.It has been conventionally viewed as a whole ice body with high albedo in General Circulation Models or Regional Climate Models and the differe...Antarctica plays a key role in global energy balance and sea level change.It has been conventionally viewed as a whole ice body with high albedo in General Circulation Models or Regional Climate Models and the differences of land cover has usually been overlooked.Land cover in Antarctica is one of the most important drivers of changes in the Earth system.Detailed land cover information over the Antarctic region is necessary as spatial resolution improves in land process models.However,there is a lack of complete Antarctic land cover dataset derived from a consistent data source.To fill this data gap,we have produced a database named Antarctic Land Cover Database for the Year 2000(AntarcticaLC2000) using Landsat Enhanced Thematic Mapper Plus(ETM+) data acquired around 2000 and Moderate Resolution Imaging Spectrometer(MODIS) images acquired in the austral summer of 2003/2004 according to the criteria for the 1:100000-scale.Three land cover types were included in this map,separately,ice-free rocks,blue ice,and snow/firn.This classification legend was determined based on a review of the land cover systems in Antarctica(LCCSA) and an analysis of different land surface types and the potential of satellite data.Image classification was conducted through a combined usage of computer-aided and manual interpretation methods.A total of 4067 validation sample units were collected through visual interpretation in a stratified random sampling manner.An overall accuracy of 92.3%and the Kappa coefficient of 0.836 were achieved.Results show that the areas and percentages of ice-free rocks,blue ice,and snow/firn are 73268.81 km2(0.537%),225937.26 km2(1.656%),and 13345460.41 km2(97.807%),respectively.The comparisons with other different data proved a higher accuracy of our product and a more advantageous data quality.These indicate that AntarcticaLC2000,the new land cover dataset for Antarctica entirely derived from satellite data,is a reliable product for a broad spectrum of applications.展开更多
基金ASCOS was made possible by grants from DAMOCLES and the Knut and Alice Wallenberg Foundation,and was organized by the Swedish Polar Research Secretariat
文摘Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic clouds. The CloudSat satellite launched in 2006 with a 94GHz Cloud Profiling Radar (CPR) may contribute to close this gap. Here we compare one of the key parameters, the cloud liquid water path (LWP) retrieved from CloudSat observations and from microwave radiometer (MWR) data taken during the ASCOS (Arctic Summer Cloud Ocean Study) cruise of the research vessel Oden from August to September 2008. Over the 45 days of the ASCOS cruise, collocations closer than 3 h and 100 km were found in only 9 d, and collocations closer than 1 h and 30 km in only 2 d. The poor correlations in the scatter plots of the two LWP retrievals can be explained by the patchiness of the cloud cover in these two days (August 5th and September 7th), as confirmed by coincident MODIS (Moderate-resolution Imaging Spectroradiome- ter) images. The averages of Oden-observed LWP values are systematically higher (40-70 g m-2) than the corresponding CloudSat observations (0-50 g m2). These are cases of generally low LWP with presumably small droplets, and may be explained by the little sensitivity of the CPR to small droplets or by the surface clutter.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 49794030 and 40105001.
文摘Using a microwave radiative transfer model, atmospheric sounding profiles, satellite brightness temperatures, and some surface observed measurements under cloud-free conditions, surface emissivities at the frequencies of TRMM/TMI (Tropical Rainfall Measuring Mission Microwave Imager) at Shouxian in HUBEX (Huaihe River Basin Energy and Water Cycle Experiment) are retrieved. Compared to the microwave surface emissivities with changing conditions of the surface, it is found that the microwave emissivities have some sensitive variability with the conditions of the surface, and the variability is reasonable. In the calculation, the surface air temperatures are assumed to equal the surface skin temperatures, and only the emissivity at Shouxian is calculated; the calculation of the emissivities over the region of HUBEX needs more measurements.
基金Under the auspices of National Natural Science Foundation of China (No.50879033,41001116)Specialized Research Fund for the Doctoral Program of Higher Education (No.20090211110025)Fundamental Research Funds for the Central Universities (No.lzujbky-2010-221)
文摘The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes in the Badain Jaran Desert using ground-penetrating radar (GPR).We processed and analyzed the GPR data and investigated the feasibility of using integrated GPR and sedimentological data to reconstruct dunes structure,sedimentary environment and geomorphological evolution.The results show that the internal structures of star dune and transverse dune represent various stages of mega-dune evolution: the main deposition processes of mega-dune are similar to those of transverse dunes but have a more complicated mechanism of sand transport and deposition because of the superimposition of dunes;the upper section of the mega-dune has a structure similar to that of star dune,with vertical aggradations on top.Diffraction hyperbolae in the GPR profile indicates that the presence of ancient dunes characterized by calcareous cementation layers is involved in the maintenance of mega-dunes,and water levels,shown by continuous,sub-horizontal GPR reflections,are supposed to be closely related to mega-dunes and the interdune lakes.Outcrop of wet sand and horizontal stratifications on the GPR image indicate moisture potentials with different levels inside mega-dunes.The multiplex geomorphology in the Badain Jaran Desert is the result of global climatic undulation,the unique geographical location,the geological structural features,etc.
文摘An algorithm to detect tropical deep convective clouds and deep convective overshootings based on the measurements from the three water vapor channels (1833GHz± 1GHz, 183.3GHz±3GHz and 183.3GHz±7GHz) of the Advanced Microwave Sounding Unit-B (AMSU-B) is presented. This algorithm is an improved version of the method of Hong et al. (2005). The proposed procedure is based on the statistical analysis of seven years' (2001-2007) measurements from AMSU-B on NOAA-16. From the 1-d histograms of the brightness temperature of the three water vapor channels and the 2-d histograms of the brightness temperature dif- ference between these channels, new thresholds for brightness temperature differences and the brigb.tness temperature of chamM 18 (183.3 GHz 4-1 GHz) are suggested. The new algorithm is employed to investigate the mean distribution of tropical deep convective clouds and convective overshootings from 30'S to 30'N for the years 2001 to 2007. The major concentration of deep convective clouds and convective overshootings is found over the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), tropical Africa, South America, the Indian Ocean and Indonesia ruth an average fraction of 0.4%. In terms of these clouds we identity, the secondary Intertropical Convergence Zone located in the eastern South Pacific and parallel to the main ITCZ in the North Pacific. The convective overshooting is more frequently observed over land than over the ocean.
基金the National Key R&D Program of China(Grant No.2018YFA0605901).
文摘The Antarctic,including the continent of Antarctica and the Southern Ocean,is a critically important part of the Earth system.Research in Antarctic meteorology and climate has always been a challenging endeavor.Studying and predicting weather patterns in the Antarctic are important for understanding their role in local-to-global processes and facilitating field studies and logistical operations in the Antarctic(e.g.,Walsh et al.,2018).Studies of climate change in the Antarctic are comparatively neglected compared to those of the Arctic.However,significant climate changes have occurred in the Antarctic in the past several decades,i.e.,a strong warming over the Antarctic Peninsula even with a recent minor cooling,a deepening of the Amundsen Sea low,a rapid warming of the upper ocean north of the circumpolar current,an increase of Antarctic sea ice since the late 1970s followed by a recent rapid decrease,and an accelerated ice loss from the Antarctic ice shelf/sheet since the late 1970s(e.g.,Turner et al.,2005;Raphael et al.,2016;Sallée,2018;Parkinson,2019;Rignot et al.,2019).Investigating recent climate change in the Antarctic and the underlying mechanisms are important for predicting future climate change and providing information to policymakers.
基金Q.W.was supported by the German Helmholtz Climate Initiative REKLIM(Regional Climate Change and Humans)and the German Federal Ministry for Education and Research(BMBF)within the EPICA project(grant no.03F0889A)Q.S.was supported by the Taishan Scholars Program(no.tsqn202211264)+7 种基金the Shandong Provincial Natural Science Foundation(ZR2022JQ17).S.W.was supported by the National Natural Science Foundation of China(grant no.42005044).G.S.was supported by the German Research Foundation(DFG,Deutsche Forschungsgemeinschaft)through the Transregional Collaborative Research Center TRR 172“(AC)3-Arctic Amplification”(grant no.268020496)the European Union’s Horizon 2020 research and innovation programme via project CRiceS(grant no.101003826).The Bering Strait work is supported by NSF-OPP Arctic Observing Network grants 1758565 and 2153942.P.G.M.was supported by the Natural Sciences and Engineering Research Council of Canada via research grant rgpin227438-09.The Fram Strait Arctic Outflow Observatory is supported by the Norwegian Polar Institute and by the Norwegian Research Council through the FRIPRO program(FreshArc,grant 286971).C.M.L.and the Davis Strait observing system are supported by the U.S.National Science Foundation Arctic Observing Network under grant 1902595.
文摘Arctic Ocean gateway fluxes play a crucial role in linking the Arctic with the global ocean and affecting climate and marine ecosystems.We reviewed past studies on Arctic-Subarctic ocean linkages and examined their changes and driving mechanisms.Our review highlights that radical changes occurred in the inflows and outflows of the Arctic Ocean during the 2010s.Specifically,the Pacific inflow temperature in the Bering Strait and Atlantic inflow temperature in the Fram Strait hit record highs,while the Pacific inflow salinity in the Bering Strait and Arctic outflow salinity in the Davis and Fram straits hit record lows.Both the ocean heat convergence from lower latitudes to the Arctic and the hydrological cycle connecting the Arctic with Subarctic seas were stronger in 2000-2020 than in 1980-2000.CMIP6 models project a continuing increase in poleward ocean heat convergence in the 21st century,mainly due to warming of inflow waters.They also predict an increase in freshwater input to the Arctic Ocean,with the largest increase in freshwater export expected to occur in the Fram Strait due to both increased ocean volume export and decreased salinity.Fram Strait sea ice volume export hit a record low in the 2010s and is projected to continue to decrease along with Arctic sea ice decline.We quantitatively attribute the variability of the volume,heat,and freshwater transports in the Arctic gateways to forcing within and outside the Arctic based on dedicated numerical simulations and emphasize the importance of both origins in driving the variability.
文摘In the Review Article"A Review of Arctic–Subarctic Ocean Linkages:Past Changes,Mechanisms,and Future Projections"[1],the x-axis in Figure 4B and y-axis in Figure 8F were skewed during picture beautification by an artist.These errors did not affect the conclusions of the paper.Figures 4B and 8F have now been corrected in the PDF and HTML(full text).
基金supported by the National Basic Research Program of China(2010CB951803)the China Sustainable Energy Program(G-1010-12447)the Project of Monitoring and Management on Emission Reduction,managed by the Ministry of Environmental Protection of China.(2011A078)
文摘Satellite derived NO2 column data have been used to study Chinese national fossil fuel consumption and pollutant emissions.Based on NO 2 retrievals from two satellites (GOME and SCIAMACHY) for 1996-2010,we analyzed the characteristics and evolution of regional pollution related to NO x emissions in China.Satellite observations indicated that the highly polluted regions were expanding.Anthropogenic emission dominated areas have expanded from the east to central and western China,and new highly polluted regions have formed throughout the nation.Bottom-up emission estimates suggested a 133% increase in anthropogenic NOx emissions in East Central China during 1996 to 2010,which was lower than the 184% increase of the NO2 columns measured by the satellites.We found that growth rates of NOx emissions have slowed in Chinese megacities over recent years,in contrast to which,the NOx emissions were soaring in medium-sized cities,indicating that strict controls of NOx emissions from coal-fired facilities are required in China.
基金supported by Chinese Arctic and Antarctic Administration,National Basic Research Program of China (Grant No. 2012CB957704)National High-tech R&D Program of China (Grant Nos. 2008AA121702and 2008AA09Z117)+1 种基金National Natural Science Foundation of China(Grant Nos. 41106157 and 41176163)Open Fund of State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS201005)
文摘A revised Landsat Image Mosaic of Antarctica (LIMA) is presented, using the 1073 multi-band scenes of the original Land- sat-7 ETM+ LIMA image collection available at the United States Geological Survey (USGS: http://lima.usgs.gov/). Three improvements have been applied during the data processing: (1) DN saturation is adjusted by adopting a linear regression, which has a lower root mean square error than the ratio regression used by LIMA; (2) solar elevation angle is calculated using pixel-level latitude/longitude and the acquisition time and date of the central pixel of the scene, improving slightly upon the bi- linear interpolation of the solar elevation angles of scene comers applied in LIMA; and (3) two additional image bands, Band 5 and Band 7, are sharpened using the panchromatic band (Band 8) and a Gram-Schmidt Spectral Sharpening algorithm to more easily distinguish snow, cloud and exposed rocks. The final planetary reflectance product is stored in 16-bit bands to preserve the full radiometric content of the scenes. A comparative statistical analysis among 12 sample regions indicates that the new mosaic has enhanced visual qualities, information entropy, and information content for land cover classification relative to LIMA.
基金Work at the Chinese University of Hong Kong(CUHK)was supported by the Open Research Fund of Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(CAS-RADI,No.2014LDE010)National Key Basic Research Program of China(2015CB954103)+2 种基金Work at the RADI-CAS was funded by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(No.XDA05040401)Work at University of Toronto is supported by the global scholarship program for research excellent from CUHK to Z.-C.ZengThe TCCON Network is supported by NASA’s Carbon Cycle Science Program through a grant to the California Institute of Technology.TCCON data were obtained from the TCCON Data Archive,operated by the California Institute of Technology from the website at http://tccon.ipac.caltech.edu/.Measurement programs at Darwin and Wollongong are supported by the Australian Research Council under grants DP140101552,DP110103118,DP0879468352,LP0562346.A part of work for Saga site at JAXA was supported by the Environment Research and Technology Development Fund(A-1102)of the Ministry of the Environment,Japan.Four Corners TCCON site was funded by LANL’s LDRD Project(20110081DR).
文摘This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial and temporal dependencies between observations.The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO_(2),and obtains global land maps of XCO_(2),with a spatial grid resolution of 1°latitude by 1°longitude and temporal resolution of 3 days.We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways:(1)in cross-validation,the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations,(2)in comparison with ground truth provided by the Total Carbon Column Observing Network(TCCON),the predicted XCO_(2)time series and those from TCCON sites are in good agreement,with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and(3)in comparison with model simulations,the spatio-temporal variability of XCO_(2)between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent.The generated mapping XCO_(2)data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.
基金supported by the National Natural Science Foundation of China (No. 91544221)the National Key R&D Programs of China (Nos. 2017YFC0209803, 2017YFC0210000)the CAS Strategic Priority Research Program Grant (No. XDB05020000)
文摘Currently, modeling studies tend to significantly underestimate observed space-based glyoxal (CHOCHO) vertical column densities (VCDs), implying the existence of missing sources of giyoxal. Several recent studies suggest that the emissions of aromatic compounds and molar yields of glyoxal in the chemical mechanisms may both be underestimated, which can affect the simulated glyoxal concentrations. In this study, the influences of these two factors on glyoxal amounts over China were investigated using the RAMS-CMAQ modeling system for January and July 2014. Four sensitivity simulations were performed, and the results were compared to satellite observations. These results demonstrated significant impacts on glyoxal concentrations from these two factors. In case 1, where the emissions of aromatic compounds were increased three-fold, improvements to glyoxal VCDs were seen in high anthropogenic emissions regions. In case 2, where molar yields of glyoxal from isoprene were increased five-fold, the resulted concentrations in July were B-B-fold higher, achieving closer agreement between the modeled and measured glyoxal VCDs. The combined changes from both cases 1 and 2 were applied in case B, and the model succeeded in further reducing the underestimations of glyoxal VCDs. However, the results over most of the regions with pronounced anthropogenic emissions were still underestimated. So the molar yields of giyoxal from anthropogenic precursors were considered in case 4. With these additional mole yield changes (a two-fold increase), the improved concentrations agreed better with the measurements in regions of the lower reaches of the Yangtze River and Yellow River in January but not in July.
基金supported by the National Key R&D Program of China (2018YFA0605901)the NOAA Climate Program Office (NA15OAR4310163)+1 种基金the National Natural Science Foundation of China (41676185)and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDY-SSW-DQC021)
文摘Rapid declines in Arctic sea ice have captured attention and pose significant challenges to a variety of stakeholders. There is a rising demand for Arctic sea ice prediction at daily to seasonal time scales, which is partly a sea ice initial condition problem. Thus, a multivariate data assimilation that integrates sea ice observations to generate realistic and skillful model initialization is needed to improve predictive skill of Arctic sea ice. Sea ice data assimilation is a relatively new research area. In this review paper, we focus on two challenges for implementing multivariate data assimilation systems for sea ice forecast. First, to address the challenge of limited spatiotemporal coverage and large uncertainties of observations, we discuss sea ice parameters derived from satellite remote sensing that(1) have been utilized for improved model initialization, including concentration, thickness and drift, and(2) are currently under development with the potential for enhancing the predictability of Arctic sea ice, including melt ponds and sea ice leads. Second, to strive to generate the ‘‘best" estimate of sea ice initial conditions by combining model simulations/forecasts and observations, we review capabilities and limitations of different data assimilation techniques that have been developed and used to assimilate observed sea ice parameters in dynamical models.
基金supported by the Chinese Arctic and Antarctic Administration.National Basic Research Program of China(Grant No.2012CB957704)National Natural Science Foundation of China(Grant Nos.41676176 & 41676182)National High-tech R&D Program of China(Grant No.2008AA09Z117)
文摘Antarctica plays a key role in global energy balance and sea level change.It has been conventionally viewed as a whole ice body with high albedo in General Circulation Models or Regional Climate Models and the differences of land cover has usually been overlooked.Land cover in Antarctica is one of the most important drivers of changes in the Earth system.Detailed land cover information over the Antarctic region is necessary as spatial resolution improves in land process models.However,there is a lack of complete Antarctic land cover dataset derived from a consistent data source.To fill this data gap,we have produced a database named Antarctic Land Cover Database for the Year 2000(AntarcticaLC2000) using Landsat Enhanced Thematic Mapper Plus(ETM+) data acquired around 2000 and Moderate Resolution Imaging Spectrometer(MODIS) images acquired in the austral summer of 2003/2004 according to the criteria for the 1:100000-scale.Three land cover types were included in this map,separately,ice-free rocks,blue ice,and snow/firn.This classification legend was determined based on a review of the land cover systems in Antarctica(LCCSA) and an analysis of different land surface types and the potential of satellite data.Image classification was conducted through a combined usage of computer-aided and manual interpretation methods.A total of 4067 validation sample units were collected through visual interpretation in a stratified random sampling manner.An overall accuracy of 92.3%and the Kappa coefficient of 0.836 were achieved.Results show that the areas and percentages of ice-free rocks,blue ice,and snow/firn are 73268.81 km2(0.537%),225937.26 km2(1.656%),and 13345460.41 km2(97.807%),respectively.The comparisons with other different data proved a higher accuracy of our product and a more advantageous data quality.These indicate that AntarcticaLC2000,the new land cover dataset for Antarctica entirely derived from satellite data,is a reliable product for a broad spectrum of applications.