Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons...Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1).展开更多
Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N...Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N'-methylene bis(acrylamide) as crosslinker.It was found that the reaction for the crosslink polymerization of AA/AMPS hydrogels had orders of 0.58,1.14,and 0.86 with respect to the initiator,AMPS,and AA,respectively.From the Arrhenius plots,the activation energy of the crosslink polymerization was found to be about 140 and 89 kJ·mol-1 in the presence and absence of the crosslinker,respectively,in the temperature range from 45 to 65 °C.It was noted that the crosslinker had effects on the reaction order of the initiator and the activation energy due to the formation of cross-linked networks,which was verified by Fourier transfer infrared (FTIR) spectrum.To further confirm the influences of the cross-linked network structure on kinetic parameters of the crosslink polymerization,a mechanism was proposed,which highlights the different termination routes between free radical polymerization and crosslink polymerization.These results suggest that dilatometry provides a convenient tool for crosslink polymeri-zation study,and confirm that the cross-linked networks are formed in the crosslink polymerization.展开更多
Poly(silphenylene-siloxane)s had been synthesized through dehydrocarbon polycondensation of 1,4- bis(dimethylsilyl)benzene(BDSB)and dialkoxysilane.The polymer composition and structure was characterized by ^(29)Si-NMR...Poly(silphenylene-siloxane)s had been synthesized through dehydrocarbon polycondensation of 1,4- bis(dimethylsilyl)benzene(BDSB)and dialkoxysilane.The polymer composition and structure was characterized by ^(29)Si-NMR.The influence of temperature,B(C_6F_5)_3 concentration and monomer structure on the composition and the microstructure of the copolymers were investigated.It shows that elevating reaction temperature or using substrate (R O)_2R_2R_1Si with bulk organic group of R_1 or R_2 augments the run numb...展开更多
The fall armyworm,Spodoptera frugiperda(S.frugiperda),represents the most resistant insect species and poses serious threat to grain yield.Chlorantraniliprole(CHL),which targets the ryanodine receptors(RyRs)in insects...The fall armyworm,Spodoptera frugiperda(S.frugiperda),represents the most resistant insect species and poses serious threat to grain yield.Chlorantraniliprole(CHL),which targets the ryanodine receptors(RyRs)in insects,has demonstrated the efficacy in controlling S.frugiperda.Nevertheless,this has led to emerging resistance in several countries.To counter this resistance,a viable approach involves the development of novel compounds that bind against RyRs via distinct binding sites or modes.In this study,a series of 22 novel anthranilic diamide derivatives was designed and synthesized,and their insecticidal activities were evaluated.Most of these derivatives showed moderate to good insecticidal activity against S.frugiperda and Mythimna separata.Time-lapse fluorescence measurements of endoplasmic reticulum luminal calcium revealed that most derivatives elicited cellular responses similar as CHL when assessed on HEK293 cells expressing S.frugiperda ryanodine receptors(SfRyRs).The mode of action of compound 13a was studied and verified on the isolated neurons by calcium imaging technique.Finally,molecular docking analysis was employed to predict the binding mechanism of compound 13a against SfRyRs.Overall,these novel diamide derivatives hold promise as a valuable resource for guiding the future design of insecticidal compounds targeting RyRs.展开更多
基金the financial support from the National Natural Science Foundation of China(22108044,22208061)the Research and Development Program in Key Fields of Guangdong Province(2020B1111380002)+1 种基金the Basic Research and Applicable Basic Research in Guangzhou City(202201010290)the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery(2021GDKLPRB07)。
文摘Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1).
基金Supported by the National Natural Science Foundation of China(20176007 20376087)
文摘Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N'-methylene bis(acrylamide) as crosslinker.It was found that the reaction for the crosslink polymerization of AA/AMPS hydrogels had orders of 0.58,1.14,and 0.86 with respect to the initiator,AMPS,and AA,respectively.From the Arrhenius plots,the activation energy of the crosslink polymerization was found to be about 140 and 89 kJ·mol-1 in the presence and absence of the crosslinker,respectively,in the temperature range from 45 to 65 °C.It was noted that the crosslinker had effects on the reaction order of the initiator and the activation energy due to the formation of cross-linked networks,which was verified by Fourier transfer infrared (FTIR) spectrum.To further confirm the influences of the cross-linked network structure on kinetic parameters of the crosslink polymerization,a mechanism was proposed,which highlights the different termination routes between free radical polymerization and crosslink polymerization.These results suggest that dilatometry provides a convenient tool for crosslink polymeri-zation study,and confirm that the cross-linked networks are formed in the crosslink polymerization.
文摘Poly(silphenylene-siloxane)s had been synthesized through dehydrocarbon polycondensation of 1,4- bis(dimethylsilyl)benzene(BDSB)and dialkoxysilane.The polymer composition and structure was characterized by ^(29)Si-NMR.The influence of temperature,B(C_6F_5)_3 concentration and monomer structure on the composition and the microstructure of the copolymers were investigated.It shows that elevating reaction temperature or using substrate (R O)_2R_2R_1Si with bulk organic group of R_1 or R_2 augments the run numb...
基金Nankai University Cangzhou Bohai New Area Green Chemical Research Institute(NCC)Fund,the National Natural Science Foundation of China(Nos.31972287,32022073)the National Key Research and Development Program of China(No.2022YFE0108400)the Scientific Project of Tianjin Municipal Education Commission,China(No.2022KJ026).
文摘The fall armyworm,Spodoptera frugiperda(S.frugiperda),represents the most resistant insect species and poses serious threat to grain yield.Chlorantraniliprole(CHL),which targets the ryanodine receptors(RyRs)in insects,has demonstrated the efficacy in controlling S.frugiperda.Nevertheless,this has led to emerging resistance in several countries.To counter this resistance,a viable approach involves the development of novel compounds that bind against RyRs via distinct binding sites or modes.In this study,a series of 22 novel anthranilic diamide derivatives was designed and synthesized,and their insecticidal activities were evaluated.Most of these derivatives showed moderate to good insecticidal activity against S.frugiperda and Mythimna separata.Time-lapse fluorescence measurements of endoplasmic reticulum luminal calcium revealed that most derivatives elicited cellular responses similar as CHL when assessed on HEK293 cells expressing S.frugiperda ryanodine receptors(SfRyRs).The mode of action of compound 13a was studied and verified on the isolated neurons by calcium imaging technique.Finally,molecular docking analysis was employed to predict the binding mechanism of compound 13a against SfRyRs.Overall,these novel diamide derivatives hold promise as a valuable resource for guiding the future design of insecticidal compounds targeting RyRs.