期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Functional Polyethylene Glycol with Carboxyl-supported Platinum as an Efficient Catalysis System for the Hydrosilylation of Alkenes 被引量:1
1
作者 白赢 彭家建 +3 位作者 杨虎 厉嘉云 来国桥 李小年 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期246-253,共8页
A series of carboxylated long chain polyethylene glycols(abbreviated as PEGCOOH) has been synthesized and used to support chloroplatinic acid.These supported catalysts were then tested for their efficiency in the hydr... A series of carboxylated long chain polyethylene glycols(abbreviated as PEGCOOH) has been synthesized and used to support chloroplatinic acid.These supported catalysts were then tested for their efficiency in the hydrosilylation of alkenes.The factors affecting their catalytic properties,e.g.relative molecular mass of polyethylene glycol,reaction temperature,platinum content,and type of alkenes,have been studied.It was found that the activity of the platinum catalyst decreased with increasing length of the polyethylene glycol chain,and increased with reaction temperature.Moreover,these catalysts could be reused several times without a noticeable decrease in activity or selectivity.The reaction pathway leading to excellent selectivity for the β-adduct of hydrosilylation of alkenes with triethoxysilane catalyzed by this catalysis system was discussed. 展开更多
关键词 polyethylene glycol modification PLATINUM HYDROSILYLATION ALKENE
下载PDF
Hydrodechlorination of trifluoro-trichloroethane to chlorotrifluoroethylene:Revealing the deactivation mechanism and regeneration strategy of Pd-Cu/AC catalyst
2
作者 Song Tian Yicheng Chen +7 位作者 Xiaoyu Wen Bingcheng Li Jian Lu Zile Li Feng Feng Qingtao Wang Qunfeng Zhang Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期261-268,共8页
Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst... Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method. 展开更多
关键词 CFC-113 HYDRODECHLORINATION CHLOROTRIFLUOROETHYLENE Catalyst deactivation
下载PDF
Experiments and kinetic modeling of the sorbitol dehydration to isosorbide catalyzed by sulfuric acid under conditions of non-constant volume
3
作者 Dechang Cheng Zhihong Ma +4 位作者 Ziyang Liu Xiaohui Liu Tao Liu Weizhen Sun Ling Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期281-289,共9页
Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volu... Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volume.Herein,the effects of stirring rate,catalyst dosage,reaction temperature,and reaction time on the dehydration reaction of sorbitol were investigated.The yield of isosorbide up to 77.13%was obtained after 1.5 h of reaction time under conditions of 2 kPa,1.0%(mass)catalyst dosage,and 413.15 K.Based on the sorbitol dehydration reaction mechanism and a simplified reaction network,a kinetic model was developed in this work.A good agreement was accomplished between kinetic modeling and experiments between 393.15 and 423.15 K.The fitting results indicate that side reactions with higher activation energies are more affected by reaction temperatures,and the main side reaction that influences the selectivity of isosorbide is the oligomerization reaction among the primary dehydration products of sorbitol.The model fitting of the catalyst amounts effect shows that the effective concentration of sulfuric acid would be reduced with the increase of dosage due to the molecular agglomeration effect.Hopefully,the kinetic experiments and modeling results obtained in this work will be helpful to the design and optimization of the industrial sorbitol dehydration process. 展开更多
关键词 ISOSORBIDE Sorbitol dehydration Non-constant volume Kinetic modeling
下载PDF
Accelerating the Screening of Modified MA_(2)Z_(4) Catalysts for Hydrogen Evolution Reaction by Deep Learning-Based Local Geometric Analysis
4
作者 Jingnan Zheng Shibin Wang +3 位作者 Shengwei Deng Zihao Yao Junhua Hu Jianguo Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期290-302,共13页
Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity rela... Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity relationships.The traditional ML models are always difficult to identify the structural differences among the single-atom systems with different modification methods,leading to the limitation of the potential application range.Aiming to the structural properties of several typical two-dimensional MA_(2)Z_(4)-based single-atom systems(bare MA_(2)Z_(4) and metal single-atom doped/supported MA_(2)Z_(4)),an improved crystal graph convolutional neural network(CGCNN)classification model was employed,instead of the traditional machine learning regression model,to address the challenge of incompatibility in the studied systems.The CGCNN model was optimized using crystal graph representation in which the geometric configuration was divided into active layer,surface layer,and bulk layer(ASB-GCNN).Through ML and DFT calculations,five potential single-atom hydrogen evolution reaction(HER)catalysts were screened from chemical space of 600 MA_(2)Z_(4)-based materials,especially V_(1)/HfSn_(2)N_(4)(S)with high stability and activity(Δ_(GH*)is 0.06 eV).Further projected density of states(pDOS)analysis in combination with the wave function analysis of the SAC-H bond revealed that the SAC-dz^(2)orbital coincided with the H-s orbital around the energy level of−2.50 eV,and orbital analysis confirmed the formation ofσbonds.This study provides an efficient multistep screening design framework of metal single-atom catalyst for HER systems with similar two-dimensional supports but different geometric configurations. 展开更多
关键词 graph convolutional neural network hydrogen evolution reaction modified MA_(2)Z_(4) substrate single atom catalyst
下载PDF
Synthesis of Ln-doped MCM-41 mesoporous materials and their catalytic performance in oxidation of styrene 被引量:9
5
作者 詹望成 卢冠忠 +2 位作者 郭杨龙 郭耘 王筠松 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期59-65,共7页
Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the fram... Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the framework under hydrothermal conditions. The structure and the state of La or Ce were investigated through the analyses of XRD, nitrogen adsorption-desorption, FT-IR, and UV-Vis. XRD and N2 adsorption-desorption results showed that Ln-MCM-41 exhibited the loss of the lattice ordering of the MCM-41 construct, and larger unit cell parameter and pore diameter than pure silica MCM-41. The FT-IR and UV-Vis results indicated the presence of isolated tetra-coordinated La or Ce ions in the framework and other Ln species dispersed highly on the Ln-MCM-41 surface simultaneously. Furthermore, their catalytic behaviors in the oxidation of styrene were studied using H2O2 as the oxidant. The La-MCM-41 catalysts exhibited high reactivity and the reactivity increased with the increase of the La content in the La-MCM-41 samples. On the contrary, Ce-MCM-41 catalysts showed low reactivity in the oxidation of styrene and the conversion of styrene decreased with the increase of the Ce content in the Ce-MCM-41 samples. 展开更多
关键词 Ln-MCM-41 mesoporous materials STYRENE OXIDATION rare earths
下载PDF
High-yield production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over carbon supported Ni–Co bimetallic catalyst 被引量:7
6
作者 Panpan Yang Qineng Xia +1 位作者 Xiaohui Liu Yanqin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1015-1020,共6页
The catalytic conversion of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) has attracted extensive research interests because DMF can be used as potential and competitive renewable transportation fuel or add... The catalytic conversion of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) has attracted extensive research interests because DMF can be used as potential and competitive renewable transportation fuel or additives. Here we report a non-noble bimetallic catalyst with improved activity for hydrogenation and hydrogenolysis by introducing active carbon as support into a nickel–cobalt catalyst. The characterizations of the catalyst indicate that the Ni and Co species are uniformly dispersed on the active carbon through the wetness impregnation method. The influences of reaction temperature and hydrogen pressure are systematically investigated and an excellent yield (up to 95%) of DMF can be obtained at relatively mild conditions, 130 °C and 1 MPa H2, over the carbon supported Ni–Co bimetallic catalyst. The high catalytic activity originates from the synergistic effect between Ni and CoOxspecies, the high BET surface area of the catalyst, and the uniform dispersion of Ni and Co species on the active carbon. The catalyst could be reused for 5 times without loss of activity in a batch reactor. Futhermore, the conversion of HMF to DMF on a fixed-bed reactor was also investigated and the 2%Ni–20%Co/C catalyst exhibited an excellent yield to DMF (>90%) for 71 h time on stream, indicating the high activity and stability of the catalyst. © 2016 Science Press 展开更多
关键词 Batch reactors BIOMASS CATALYSTS Chemical reactors Cobalt compounds Fuel additives HYDROGENOLYSIS HYDROLYSIS NICKEL
下载PDF
Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst 被引量:8
7
作者 Wei Jiang Ying Li +3 位作者 Wenfeng Han Yaping Zhou Haodong Tang Huazhang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期443-452,共10页
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t... A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst. 展开更多
关键词 high surface area graphitic carbon materials (HSGCs) supported Ru catalysts ammonia synthesis graphitic degree ball-roJlling
下载PDF
Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2 被引量:11
8
作者 Shan Cheng Yi-Jing Gao +7 位作者 Yi-Long Yan Xu Gao Shao-Hua Zhang Gui-Lin Zhuang Sheng-Wei Deng Zhong-Zhe Wei Xing Zhong Jian-Guo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期144-151,共8页
To search the new effective nitrogen reduction reaction(NRR)electrocatalyst is very important for the ammonia-based industry.Herein,we reported the design of a novel NRR electrocatalyst with Ru NPs loaded on oxygen-va... To search the new effective nitrogen reduction reaction(NRR)electrocatalyst is very important for the ammonia-based industry.Herein,we reported the design of a novel NRR electrocatalyst with Ru NPs loaded on oxygen-vacancy TiO2(Ru/TiO2-Vo).Structural characterizations revealed that oxygen vacancy was loaded in the matrix of Ru/TiO2-Vo.Electrocatalytic results indicated that Ru/TiO2-Vo showed good NRR performance(2.11μg h^-1 cm^-2).Contrast tests showed that NRR property of Ru/TiO2-Vo was much better than those of Ru/TiO-12(B)(0.53μg hcm^-2)and Ru/P25(0.42μg h^-1 cm^-2).Furthermore,density functional theory calculation results indicated catalytic mechanism of NRR and rate-determining step(*N2+1/2 H2→*N+*NH)was the potential-determining step with the overpotential requirement of 0.21 V.A combination of electronic structure analysis and catalytic measurement shed light on the synergistic effect of Ru and oxygen vacancy on the NRR performance. 展开更多
关键词 Nitrogen reduction reaction ELECTROCATALYSIS Oxygen vacancy DFT
下载PDF
Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane 被引量:8
9
作者 詹望成 卢冠忠 +5 位作者 郭杨龙 郭耘 王艳芹 王筠松 张志刚 刘晓晖 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期515-522,共8页
Cerium-doped MCM-48 molecular sieves were synthesized hydrothermally and characterized by X-ray diffraction, nitrogen adsorption, transmission electron microscope, FT-IR spectroscopy, UV-visible spectroscopy, and Rama... Cerium-doped MCM-48 molecular sieves were synthesized hydrothermally and characterized by X-ray diffraction, nitrogen adsorption, transmission electron microscope, FT-IR spectroscopy, UV-visible spectroscopy, and Raman spectroscopy. The results showed that all the samples held the structure of MCM-48, and Ce could enter the framework of MCM-48. However, when Ce/Si molar ratio in the sampies was high (0.04 or 0.059), there were CeO2 crystallites as secondary phase in the extraframework of MCM-48. Ce-doped MCM-48 was a very efficient catalyst for the oxidation of cyclohexane in a solvent-free system with oxygen as an oxidant. In the conditions of 0.5 MPa 02 and 413 K for 5 h, the conversion of cyclohexane was 8.1% over Ce-MCM-48-0.02, the total selectivity of cyclohexanol and cyclohaxnone was 98.7%. With an increase of Ce content, the conversion of cyclohexane and the selectivity to cyclohexanol decreased somewhat, but the selectivity to cyclohexanone increased. 展开更多
关键词 Ce-doped MCM-48 synthesis CYCLOHEXANE catalytic oxidation rare earths
下载PDF
Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports 被引量:8
10
作者 Di Ma Shenglu Lu +2 位作者 Xiaohui Liu Yong Guo Yanqin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第4期609-617,M0006,共10页
Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important.Previously,we found that NbOx species played a key role in the activation and cleavage of C-O... Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important.Previously,we found that NbOx species played a key role in the activation and cleavage of C-O bonds in lignin and its model compounds.In this study,commercial niobic acid(HY-340),niobium phosphate(NbPO-CBMM)and lab-made layered niobium oxide(Nb2O5-Layer)were chosen as supports to study the effect of Brosted and Lewis acids on the activation of C-O bonds in lignin conversion.A variety of Ru-loaded,Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol.The results show that all the Ru/Nb-based catalysts produce high mole yields of C7-C9 hydrocarbons(82.3%-9.1%).What's more,Ru/Nb2O5-Layer affords the best mole yield of C7-C9 hydrocarbons and selectivity for C7-C9 aromatic hydrocarbons,of up to 99.1% and 88.0%,respectively.Moreover,it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C-O bond of phenols.Additionally,the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons.A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons. 展开更多
关键词 LIGNIN Aromatic hydrocarbons Nb-based supports Lewis acid sites Ru
下载PDF
Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups 被引量:7
11
作者 Xing Chen Lu Yang +5 位作者 Wangcheng Zhan Li Wang Yun Guo Yunsong Wang Guanzhong Lu Yanglong Guo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期47-53,共7页
Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated ... Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated Fe3O4nanoparticles using N,N’‐methylene‐bis(acrylamide)as across‐linking agent.Penicillin G acylase(PGA)was covalently immobilized on the surface of theparamagnetic microspheres by reacting the amino groups of the PGA molecules with the epoxygroups of the paramagnetic polymer microspheres.The effect of the SiO2coating and the amount ofparamagnetic Fe3O4nanoparticles on the initial activity and the operational stability of the immobilizedPGA was investigated.The results indicated that SiO2played an important role in the polymerization process and paramagnetic polymer microspheres with a SiO2‐coated Fe3O4nanoparticles mass content of7.5%are an optimal support material for PGA immobilization.Immobilized PGA on the paramagnetic polymer microspheres shows a high initial activity of430U/g(wet)and retains99%of its initial activity after recycling10times.Furthermore,immobilized PGA exhibits high thermal stability,pH stability and excellent reusability,which can be rapidly recycled by the aid of magnet.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Paramagnetic polymer microspheres Epoxy groups Penicillin G acylase Covalent bonding IMMOBILIZATION
下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:15
12
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 Transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) Overall water electrolysis
下载PDF
Effect of activated carbon support on CS_2 removal over coupling catalysts 被引量:6
13
作者 Li Wang Yun Guo Guanzhong Lu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期397-402,共6页
Supported coupling catalysts for CS2 removal were prepared with different activated carbons originated from wood,coconut shell and coal as supports,and their catalytic activities for CS2 removal were tested at ambient... Supported coupling catalysts for CS2 removal were prepared with different activated carbons originated from wood,coconut shell and coal as supports,and their catalytic activities for CS2 removal were tested at ambient temperature.The textural and surface properties of the activated carbons were characterized by nitrogen adsorption,temperature-programmed desorption(TPD)and Boehm titration.The activated carbon support with meso-and macropores,and oxygen-functional groups performs higher CS2 removal ability at ambient temperature.The effects of flow rate,CS2 inlet concentration,temperature and relative humidity on CS2 removal were also investigated.High efficient removal is obtained at temperature of 50-C,space velocity of 2000 h-1,inlet CS2 concentration of 500 mgS/m3 and relative humidity of 20%with the breakthrough sulfur capacity up to 4.3 gS/gCat and working sulfur capacity up to 7 gS/gCat. 展开更多
关键词 carbon disulfide coupling removal activated carbon ambient temperature
下载PDF
Preparation of LaMnO_3 for catalytic combustion of vinyl chloride 被引量:9
14
作者 Li Wang Hongkai Xie +4 位作者 Xingdan Wang Guizhen Zhang Yanglong Guo Yun Guo Guanzhong Lu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1406-1412,共7页
LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X... LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X‐ray diffraction(XRD),Raman spectroscopy(Raman),O2temperature programmed desorption(O2‐TPD),H2temperature programmed surface reaction(H2‐TPR)and X‐ray photoelectron spectroscopy(XPS)were used to characterize the physicochemical properties of the LaMnO3samples.The preparation methods had obvious effects on the distribution of oxygen and manganese species on the catalyst surface.The reaction followed the suprafacial mechanism;the activity corresponded with the high amount of Mn4+and adsorbed oxygen species.LaMnO3prepared by the citrate sol‐gel method had the best performance for vinyl chloride combustion with T90of182°C.The optimal activity was attributed to the improved redox capability of Mn4+/Mn3+.More available adsorbed oxygen and Mn4+species on the surface were mainly responsible for the remarkable enhancement of the catalytic activity. 展开更多
关键词 LAMNO3 Vinyl chloride Catalytic combustion Low temperature Preparation method
下载PDF
Effect of CeO_2 preparation method and Cu loading on CuO/CeO_2 catalysts for methane combustion 被引量:6
15
作者 Weiling Yang Dao Li Dongmei Xu Xingyi Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期458-466,共9页
CeO2 was synthesized by sol-gel, hydrothermal, nitrate thermal decomposition methods, respectively, and used as support to prepare CuO/CeO2 catalysts. According to characterization and reaction results, preparation me... CeO2 was synthesized by sol-gel, hydrothermal, nitrate thermal decomposition methods, respectively, and used as support to prepare CuO/CeO2 catalysts. According to characterization and reaction results, preparation method of CeO2 had a great influence on the physicochemical properties and activities of CuO/CeO2 catalysts. CuO with high dispersion and strong interaction with CeO2 was highly active in methane combustion, while CuO particles less associated with CeO2 showed less activity. The CuO catalyst supported on CeO2 which was prepared via nitrate thermal decomposition method showed the largest area, the smallest particle size, the highest dispersion of copper species and strong support metal interactions. Therefore, it presented the highest redox ability and activity for methane combustion. Activities of the catalysts with different copper content kept increasing until 5% Cu loading and from then on kept constant. Moreover, methane conversion decreased as methane space velocities increased on CuO/CeO2 catalyst. Addition of CO2 to the feed did not produce a significant effect on the catalytic activity, but the presence of H2O provoked a remarkable decrease on the activity of CuO/CeO2 catalyst. 展开更多
关键词 CERIA CuO/Ce02 methane combustion
下载PDF
Formation mechanism of highly dispersed semi-embedded ruthenium nanoparticles in porous carbon matrix determined by in situ temperature-programmed infrared spectroscopy 被引量:3
16
作者 Guojun Lan Yaping Zhou +2 位作者 Hangjia Shen Haodong Tang Ying Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期146-156,共11页
The carbonization process of a sucrose‐RuCl3/SBA‐15composite towards a Ru‐containing ordered mesoporous carbon(Ru‐OMC)catalyst was studied by in situ temperature‐programmed infrared spectroscopy to identify the s... The carbonization process of a sucrose‐RuCl3/SBA‐15composite towards a Ru‐containing ordered mesoporous carbon(Ru‐OMC)catalyst was studied by in situ temperature‐programmed infrared spectroscopy to identify the stabilization role of organic carbon precursors during the formation of highly dispersed Ru nanoparticles.The results show that the formation of metal carbonyl species results in the formation of homogeneously distributed Ru nanoparticles,and the rigid silica support and carbon matrix around the Ru(CO)x complex can significantly avoid the sintering and agglomeration of Ru metal particles during elevated temperature thermal treatment.These results ultimately demonstrate that sucrose plays important roles in the formation of homogeneously distributed Ru nanoparticles in a porous carbon matrix.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Ruthenium nanoparticles Infrared spectroscope in‐situ Ru‐containing ordered mesoporous carbon Mesoporous carbon
下载PDF
A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene 被引量:3
17
作者 Yijing Gao Han Zhuo +6 位作者 Yongyong Cao Xiang Sun Guilin Zhuang Shengwei Deng Xing Zhong Zhongzhe Wei Jianguo Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第2期152-159,共8页
Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activat... Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal(TM)(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Cd,and Au)single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory(DFT).The end-on N2 adsorption was more energetically favorable,and the negative free energies represented good N2 activation performance,especially in the presence Fe/Ti3C2O2(﹣0.75 eV).The overpotentials of Fe/Ti3C2O2,Co/Ti3C2O2,Ru/Ti3C2O2,and Rh/Ti3C2O2 were 0.92,0.89,1.16,and 0.84 eV,respectively.The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV.Two possible potential-limiting steps may be involved in the process:(i)hydrogenation of N2 to*NNH and(ii)hydrogenation of*NH2 to ammonia.These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier.It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential,which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis. 展开更多
关键词 Electrocatalytic ammonia synthesis Single atom catalyst MXene Transition metal Density functional theory OVERPOTENTIAL Gibbs free energy
下载PDF
Highly efficient Nb2O5 catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors 被引量:3
18
作者 Yaxuan Jing Yu Xin +2 位作者 Yong Guo Xiaohui Liu Yanqin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第8期1168-1177,共10页
Aldol condensation is of significant importance for the production of fuel precursors from biomass- derived chemicals and has received increasing attention. Here we report a Nb2O5 catalyst with excellent activity and ... Aldol condensation is of significant importance for the production of fuel precursors from biomass- derived chemicals and has received increasing attention. Here we report a Nb2O5 catalyst with excellent activity and stability in the aldol condensation of biomass-derived carbonyl molecules. It is found that in the aldol condensation of furfural with 4-heptanone, Nb2O5 has obviously superior activity, which is not only better than that of other common solid acid catalysts (ZrO2 and Al2O3), more importantly, but also better than that of solid base catalysts (MgO, CaO, and magnesium- aluminum hydrotalcite). The detailed characterizations by N2 sorption/desorption, NH3-TPD, Py-FTIR and DRIFTS study of acetone adsorption reveal that Nb2O5 has a strong ability to activate the C=O bond in carbonyl molecules, which helps to generate a metal enolate intermediate and undergo the nucleophilic addition to form a new C–C bond. Furthermore, the applicability of Nb2O5 to aldol condensation is extended to other biomass-derived carbonyl molecules and high yields of target fuel precursors are obtained. Finally, a multifunctional Pd/Nb2O5 catalyst is prepared and successfully used in the one-pot synthesis of liquid alkanes from biomass-derived carbonyl molecules by combining the aldol condensation with the sequential hydrodeoxygenation. 展开更多
关键词 Aldol condensation NB2O5 C=O activation Fuel precursor Bio-liquid alkane One-pot process
下载PDF
Multi sites vs single site for catalytic combustion of methane over Co3O4(110):A first-principles kinetic Monte Carlo study 被引量:3
19
作者 Wende Hu Zheng-Jiang Shao +1 位作者 Xiao-Ming Cao P.Hu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第9期1369-1377,共9页
Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete ... Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete catalytic cycle of CH4 combustion assuming to be confined at isolated single sites of the Co3O4(110)surface is computationally compared with that on multi sites.The macroscopic kinetic behaviors of CH4 combustion on Co3O4(110)is systematically and quantitatively compared between those on the single site and multi sites utilizing kinetic Monte Carlo simulations upon the energetic information from the PBE+U calculation and statistic mechanics.The key factors governing the kinetics of CH4 combustion are disclosed for both the catalytic cycles respectively following the single-site and multi-site mechanisms.It is found that cooperation of multi active sites can promote the activity of complete CH4 combustions substantially in comparison to separated single-site catalyst whereas the confinement of active sites could regulate the selectivity of CH4 oxidation.The quantitative understanding of catalytic mechanism paves the way to improve the activity and selectivity for CH4 oxidation. 展开更多
关键词 Methane combustion DFT Single atom catalyst Multi site Single site Spinel cobalt oxides Kinetic Monte Carlo
下载PDF
Preparation and characterization of ultrafine Fe-Cu-based catalysts for CO hydrogenation 被引量:4
20
作者 Yunlai Su Yingli Wang Zhongmin Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期327-331,共5页
The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)... The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively. 展开更多
关键词 MICROEMULSION CONDUCTIVITY ultrafine Fe-Cu-based catalyst CO hydrogenation
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部