Objectives: The general purpose of this study is to detection and determination of the concentration level of dichlorodiphenyltrichloroethane (DDT) in some commercially available marine dry fishes and to investigate t...Objectives: The general purpose of this study is to detection and determination of the concentration level of dichlorodiphenyltrichloroethane (DDT) in some commercially available marine dry fishes and to investigate the contamination status of dichlorodiphenyltrichloroethane (DDT) of these dry fishes. Methods: Samples were collected from six largest dry fish markets (three from Chittagong district and three from Cox’s Bazar district) and four types of dry fishes were taken in this study are Ribbon fish (Lepturacanthus savala), Sin Croaker (Johnius dussumieri), Bombay duck (Harpodon nehereus) and Shrimp (mixed species). Total numbers of samples were 24 that were analyzed in the laboratory. Results: The results of the study show that the mean concentrations of dichlorodiphenyltrichloroethane (DDT) in the samples of Ribbon fish, Bombay duck and Sin croaker were ranged between 130.85 - 153.47ppb, 125.21 - 181.4ppb and 119.86 – 208.65ppb respectively. The mean concentrations of dichlorodiphenyltrichloroethane (DDT) were found at a lower amount in shrimp sp. than the other. Conclusions: This result indicates that the concentration of dichlorodiphenyltrichloroethane (DDT) in dry fish samples from Bangladesh are higher and may causes chronic disease and potential long-term risk for human health.展开更多
A growing increase in the world’s population and a gradual decline in poverty necessitate a search for new sources of protein in order to guarantee food security. Aquaculture has been identified as a potential sector...A growing increase in the world’s population and a gradual decline in poverty necessitate a search for new sources of protein in order to guarantee food security. Aquaculture has been identified as a potential sector capable of meeting the requirements for increased protein production without making excessive demands on the ecosystem. Although water makes up 70% of the earth’s surface, aquaculture cannot feasibly be practised everywhere;it requires a unique set of natural, social and economic resources to be managed in an environmentally responsible way. Finding suitable sites for aquaculture is becoming an ever increasing problem in the development of the sector as precautions need to be taken in setting up sites to ensure appropriate environmental characteristics exist and that good water quality can be maintained. Additionally, the effects of aquaculture on coastal and inland resources must be clearly determined to implement policies and regulatory frameworks to control its impact. Marine cage farming is gaining momentum, specifically in the Mediterranean and Black Sea coastal regions. For these sites to be further developed there is a need to minimize the effects on the environment and conflicts with other coastal users. To this aim the concept of allocated zones for aquaculture (AZA) is being adopted to provide specific areas for marine aquaculture to avoid environmental degradation. When choosing an (AZA) suitable site, it is vital to calculate ‘carrying capacity’ to reduce the risks and to protect the marine ecosystems. In this study the MERAMOD model was used to investigate the carrying capacity of marine fish farms. Modelling offers the possibility to simulate and predict the environmental impact of fish farms.展开更多
The Mediterranean Sea is home to an interesting biodiversity. The current cumulative and descriptive study aims to enumerate some relatively large marine mammals, reptiles, and fishes that have been spotted, caught, b...The Mediterranean Sea is home to an interesting biodiversity. The current cumulative and descriptive study aims to enumerate some relatively large marine mammals, reptiles, and fishes that have been spotted, caught, by-caught, or stranded on the coast of the Gaza Strip, Palestine, which extends about 42 km along the Mediterranean Sea. This 20-year study from 2003 to 2022 relied much on frequent field visits, meetings, and discussions with stakeholders, following local media sites and social media pages, and photography. The study recorded at least 26 giants or relatively large marine organisms on the Mediterranean coast of the Gaza Strip, Palestine. Certainly, the coming years may bring other marine organisms of relatively large sizes. Marine mammals included three species of cetaceans with the Fin Whale (Balaenoptera physalus) being the largest mammal and even the largest animal ever recorded in this study. Marine reptiles included three species of sea turtles, the largest of which is the Leatherback Sea Turtle (Dermochelys coriacea), which is in fact the world’s largest sea turtle. The bony fishes were represented by ten species, the largest of which was the Ocean Sunfish (Mola mola), which is the largest bony fish in the world. The cartilaginous fishes included ten species with the largest specimens encountered were the Shortfin Shark (Isurus oxyrinchus), Bluntnose Sixgill Shark (Hexanchus griseus), Scalloped Hammerhead Shark (Sphyrna lewini), and Giant Devil Ray (Mobula mobular). Seabirds were not included in the study. The Alexandria Pompano (Alectis alexandrinus) and the Silver-Cheeked Toadfish (Lagocephalus sceleratus), which are bony fishes, appear to be the relatively smallest marine organisms recorded here. In conclusion, the role of the various parties must be coordinated to ensure the sustainability of human activities and their compatibility with the task of conserving local marine biota, including the gigantic or relatively large ones.展开更多
To protect the sustainability of the benefits from seas and near coastal areas,which have under the effect of the very complex hydrodynamic conditions and intensive human activities,without disrupting the balance of n...To protect the sustainability of the benefits from seas and near coastal areas,which have under the effect of the very complex hydrodynamic conditions and intensive human activities,without disrupting the balance of nature,it is necessary to image the status of the seafloor features.Therefore,this study presents the deformations,depositional conditions,underwater constructions,and the other non-natural impacts on the seafloor of the nearshore area at western Istanbul(between Küçükçekmece and Büyükçekmece lagoons)where it intensely used by the citizens.The results of the study may provide some guidance for understanding the impacts and risk factors of uses that are or will be conducted in coastal and/or near-coastal areas.Construction planning for civil coastal structures and areas should be done in great harmony with nature,minimizing negative environmental impacts.Although sediment distribution in the area is generally quite complex,the current state of the region,wave action,hydrodynamic conditions,the amount of material transported from the land,and bathymetry are important influencing factors.The seafloor has been damaged primarily by anchor deformation and associated bottom scanning,as well as disturbing trawl tracks.The seafloor was observed as partially shallowing near the constructions(such as natural gas pipelines,fishermen’s shelter,and port piles)of coastal areas and associated with sand deposits.Therefore,scanning the seafloor using side-scan sonar may provide valuable frequency data to prevent future disruptions.展开更多
Mechanical properties of hydrate-bearing fine-grained sediments are crucial to effectively mitigate environmental risks caused by artificial and natural decomposition of natural gas hydrates,and the decomposition can ...Mechanical properties of hydrate-bearing fine-grained sediments are crucial to effectively mitigate environmental risks caused by artificial and natural decomposition of natural gas hydrates,and the decomposition can induce laterally confined deformation.To explore the effect of natural gas hydrates on laterally confined compression properties,consolidation tests are conducted on remolded hydrate-free and hydrate-bearing samples by using natural fine-grained sediments collected from the northern South China Sea as the host sediments,and empirical equations are developed based on the analyses of consolidation characteristics.The results show that vertical loading induces a reduction in void ratio,and the reduction increases with decreasing hydrate saturation when samples are subjected to the same vertical stress change.The compression index of samples is about 0.53 whether there is hydrate or not,but the yield stress of samples increases sharply with increasing hydrate saturation once beyond the critical value.The coefficient of volume compression and the coefficient of consolidation of hydrate-bearing samples both increase firstly and then decrease to a relative stable level with increasing vertical stress,and the transition occurs at 200 kPa.The average consolidation degree with elapsed time increases rapidly under low vertical stresses,slowly under median vertical stresses,and under high vertical stresses,the consolidation increases a little faster but still slower than those under low vertical stresses.展开更多
Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa...Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.展开更多
Marine heatwaves(MHWs)caused by anthropogenic climate change are becoming a key driver of change at the ecosystem level.Thermal conditions experienced by marine organisms across their distribution,particularly towards...Marine heatwaves(MHWs)caused by anthropogenic climate change are becoming a key driver of change at the ecosystem level.Thermal conditions experienced by marine organisms across their distribution,particularly towards the equator,are likely to approach their physiological limits,resulting in extensive mortality and subsequent changes at the population level.Populations at the margins of their species’distribution are thought to be more sensitive to climate-induced environmental pressures than central populations,but our understanding of variability in fitness-related physiological traits in trailing versus leading-edge populations is limited.In a laboratory simulation study,we tested whether two leading(Iceland)and two trailing(Spain)peripheral populations of the intertidal macroalga Corallina officinalis display different levels of maximum potential quantum efficiency(Fv/Fm)resilience to current and future winter MHWs scenarios.Our study revealed that ongoing and future local winter MHWs will not negatively affect leading-edge populations of C.officinalis,which exhibited stable photosynthetic efficiency throughout the study.Trailing edge populations showed a positive though non-significant trend in photosynthetic efficiency throughout winter MHWs exposure.Poleward and equatorward populations did not produce significantly different results,with winter MHWs having no negative affect on Fv/Fm of either population.Additionally,we found no long-term regional or population-level influence of a winter MHWs on this species’photosynthetic efficiency.Thus,we found no statistically significant difference in thermal stress responses between leading and trailing populations.Nonetheless,C.officinalis showed a trend towards higher stress responses in southern than northern populations.Because responses rest on a variety of local population traits,they are difficult to predict based solely on thermal pressures.展开更多
Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the de...Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields,which limits the diagnostic performance.To solve this problem,a novel transfer residual Swin Transformer(RST)is proposed for rolling bearings in this paper.RST has 24 residual self-attention layers,which use the hierarchical design and the shifted window-based residual self-attention.Combined with transfer learning techniques,the transfer RST model uses pre-trained parameters from ImageNet.A new end-to-end method for fault diagnosis based on deep transfer RST is proposed.Firstly,wavelet transform transforms the vibration signal into a wavelet time-frequency diagram.The signal’s time-frequency domain representation can be represented simultaneously.Secondly,the wavelet time-frequency diagram is the input of the RST model to obtain the fault type.Finally,our method is verified on public and self-built datasets.Experimental results show the superior performance of our method by comparing it with a shallow neural network.展开更多
The biological pump,driven by phytoplankton production and death,plays a crucial role in the ocean’s sequestration of atmospheric CO_(2).In particular,marginal seas with high primary productivity show a significant c...The biological pump,driven by phytoplankton production and death,plays a crucial role in the ocean’s sequestration of atmospheric CO_(2).In particular,marginal seas with high primary productivity show a significant capacity for carbon fixation.Variations in phytoplankton biomass and community structure are key factors influencing the efficiency of the marine biological pump.The Taiwan Strait(TS)is a unique shallow conduit that connects the East China Sea(ECS)and the South China Sea(SCS),which are subject to seasonal monsoons and episodic events(e.g.,typhoons and floods).Thus,its planktonic ecosystem is significantly influenced by physical processes such as strong ocean currents,coastal upwelling and river discharge,resulting in noticeable seasonal variability.In this study,we examined spatiotemporal patterns of phytoplankton biomass and community structure using phytoplankton-sourced biomarkers from suspended particles in surface waters across all four seasons from 2019 to 2020 in the TS.The findings highlight notable seasonal disparities in phytoplankton biomass,with spring and summer exhibiting significantly higher levels compared to autumn and winter.In order to determine phytoplankton ecosystem responses to various physical and biological processes on a seasonal scale,we used Empirical Orthogonal/Eigen Function(EOF)analysis to investigate the covarying spatiotemporal patterns of:marine-sourced biomarkers and terrestrial-sourced biomarkers in surface suspended particles,a biomass indicator(Chl a),water-mass indicators[sea surface temperature(SST),sea surface salinity(SSS),nutrients],and a hydrodynamic indicator[total suspended solids at surface/bottom water,(TSS_S and TSS_B)].The results identified six physical-biological coupling modes that influence seasonal variations in marine phytoplankton ecosystems within the energetic strait system.Additionally,an in-depth understanding of the coupling between physical process and lipid biomarker signals from suspended particles in the contemporary marine environment can offer valuable insights for interpreting ancient sediment records of phytoplankton ecosystem evolution in the TS.展开更多
The deltas serve as the primary interactive zone where terrestrial and marine environments converge,playing a pivotal role in the coastal deposition.In the Holocene,climate changes and sea level fluctuation are the pr...The deltas serve as the primary interactive zone where terrestrial and marine environments converge,playing a pivotal role in the coastal deposition.In the Holocene,climate changes and sea level fluctuation are the principal driving factors in the evolution of deltas.However,human activities such as the construction of dams and reservoirs in the Anthropocene have significantly altered sediment transport in rivers,leading to depositional pattern variation during deltaic evolution.In this study,we have conducted a comparative analysis of the morphological variations(1986-2021)in the barrier system of the Hanjiang River Delta(HRD)using satellite remote sensing(SRS)method.Additionally,we have examined the lithological changes and facies alterations observed in eight boreholes on the present barrier spit.Our findings indicate that the intensification of anthropogenic activities led to a significant reduction in the sediment flux of the Hanjiang River(HR),resulting in depocenter landward migration at the estuary.SRS analysis reveals their periodical morphological characteristics and spatial variations of estuarine sandbars(1986-1992),barrier islands-lagoons(1993-2009),and barrier spits(2010-2021)during 1986 to 2021.The stratigraphy of boreholes demonstrates a south-to-north facies transition from lagoon to lagoon-barrier spit and barrier spit in vertical lithology.Therefore,the depositional evolution of the HRD barrier system is categorized into three phases:estuarine sandbar-barrier island phase(1986-1998);barrier island-lagoon phase(1999-2009);and barrier spit phase(2010-2021).During the estuarine sandbar-barrier island phase,fluvial processes played a predominate role in the deposition.Consequently,with a significant decrease in river sediment load,the dominant factors driving depositional processes shifted towards wave action and alongshore current.Based on the conceptual model in the Holocene,we propose a modified depositional model of wave-dominated deltas during Anthropocene that encompasses three evolutionary phases:estuarine sandbars and delta front platforms,barrier island-lagoon formation and landward migration of barrier spits.This pattern highlights that human-induced reduction in river sediment flux has led to a seaward deltaic progradation driven by barrier landward migration.展开更多
During the production of nitrile rubber, significant amounts of nitrogen in the form of ammonium are generated in the wastewater. The discharge of this high-nitrogen wastewater can lead to serious environmental issues...During the production of nitrile rubber, significant amounts of nitrogen in the form of ammonium are generated in the wastewater. The discharge of this high-nitrogen wastewater can lead to serious environmental issues, including eutrophication, disruption of aquatic ecosystems, and groundwater contamination. To mitigate these impacts, this research explored the bioremediation capabilities of the macroalgae Ulva lactuca (Chlorophyta) for removing nitrogen from nitrile rubber production wastewater. The study employed single-phase and Michaelis-Menten decay models based on ammonium consumption, using various dilutions of wastewater to identify the optimal concentration for treatment. The physiological state of the macroalgae was monitored by measuring the photosynthetic capacity and specific growth rate during the experiments. In the presence of U. lactuca, ammonium concentrations decreased in all treatment groups, confirming that the ammonium kinetics conformed to both applied models. Our results show that U. lactuca effectively reduces ammonium concentrations, with an approximate removal rate of 0.020 µM·g−1·min−1 across different wastewater concentrations (70%, 80%, 90%, and 100%). Notably, the treatments with 70%, 80%, and 90% wastewater strength achieved about 67% reduction in ammonium, demonstrating the alga’s capacity to treat high-nitrogen wastewater. The photosynthetic performance of U. lactuca initially declined in control conditions but stabilized across all treatments, highlighting its adaptability. The kinetic analysis using the Michaelis-Menten model indicated a Vmax of 1342 μM·g−1·DMh−1, suggesting a robust capacity for ammonium uptake when fully saturated. Our study underscores the potential of Ulva lactuca as a cost-effective and efficient agent for wastewater bioremediation, particularly in settings with high nitrogen loads.展开更多
Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati...Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.展开更多
In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatm...In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.展开更多
A three-dimensional model is used to investigate the mechanism of the South China Sea (SCS) winter counter-current (also known as the SCS Warm Current, or the SCSWC), which flows against the wind. The model can re...A three-dimensional model is used to investigate the mechanism of the South China Sea (SCS) winter counter-current (also known as the SCS Warm Current, or the SCSWC), which flows against the wind. The model can reproduce the structure of the band-like currents over the northern shelf of the SCS, including the westward coastal current and slop current, and the SCSWC sandwiched in between. Sensitivity experiments are designed to understand the different roles of Ekman pumping of the SCSWC at different longitude. The results show that the Ekman pumping drives the SCSWC in the west segment. In the east, it is not the Ekman pumping but the intrusion of the Kuroshio that drives the SCSWC.展开更多
With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup...With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.展开更多
Nutrient loadings were measured for surface seawater and bottom sediments of semi intensive and improved extensive shrimp culture pond, adjacent estuary, and fallow land in the south east coastal region of Banglades...Nutrient loadings were measured for surface seawater and bottom sediments of semi intensive and improved extensive shrimp culture pond, adjacent estuary, and fallow land in the south east coastal region of Bangladesh during August, 2000—January, 2001 to evaluate the impact of shrimp culture. The mean levels of nutrients found in the pond surface water were 108 780 mg/L for CaCO 3, 0 526 mg/L for NH + 4 N, 3 075 wt% for organic carbon, 7 00 mg/L for PO 4 P, 5 57 mg/L for NO 3 N, and 7 33 mg/L for chlorophyll a. The maximum mean value of H 2S(0 232 mg/L) was found in estuarine water. Nutrients loading were found to be decreased with distance from the shrimp farm discharge unit in estuarine water. The mean level of organic matter, total nitrogen, and organic carbon were found in higher concentrations in sediments of cultured pond compared to bottom soil of adjacent fallow land at the same elevation. Extractable Ca values were found in higher concentration(550 33 ppt) in adjacent fallow land, as the shrimps for molting in shrimp ponds use extractable Ca. The relation between seawater H 2S value and sediment pH ( r= -0 94); sediment organic carbon and sediment pH values ( r= -0 76), sediment total nitrogen and sediment pH ( r= - 0 74) were found to be highly negatively correlated. Whereas the relation between seawater H 2S value and sediment total nitrogen ( r= 0 92), water NH + 4 N and sediment pH ( r= 0 66) were found to be positively correlated. The results revealed that load of nutrients at eutrophic level in estuarine water, and decrease of soil pH; leading to acid sulphate soil formation indicates a negative impact of shrimp culture.展开更多
The acute effects of commercial formulation of chlorpyrifos-ethyl (Dursban ) and the secondary treated industrial/urban effluent (STIUE) exposure on acetylcholinesterase (ACHE) and butyrylcholinesterase (BuChE...The acute effects of commercial formulation of chlorpyrifos-ethyl (Dursban ) and the secondary treated industrial/urban effluent (STIUE) exposure on acetylcholinesterase (ACHE) and butyrylcholinesterase (BuChE) activities in hepatopancreas and gills of Mediterranean crab Carcinus maenas were investigated. After 2 d of exposure to chlorpyriphos-ethyl, the AChE activity was inhibited in both organs at concentrations of 3.12 and 7.82 μg/L, whereas the BuCHE was inhibited only at higher concentration 7.82 μg/L of commercial preparation Dursban~. The exposure of crabs to Dursban (3.12 μg/L) showed a significant decrement of ACHE activity at 24 and 48 h, whereas the BuChE was inhibited only after 24 h and no inhibition for both enzymes was observed after 72 h. Moreover, a significant repression of AChE activity was observed in both organs of C. maenas exposed to 5% of STIUE. Our experiments indicated that the measurement of AChE activity in gills and hepatopancreas of C. maenas would be useful biomarker of organophosphorous (OP) and of neurotoxic effects of STIUE in Tunisia.展开更多
Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979–1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960–2002), we investigated t...Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979–1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960–2002), we investigated the spatiotemporal evolution of the leading sea ice motion mode (based on a complex correlation matrix constructed of normalized sea ice motion velocity) and their association with sea level pressure (SLP) and the predominant modes of surface wind field variability. The results indicate that the leading winter sea ice motion mode’s spatial evolution is characterized by two alternating and distinct sea ice modes, or their linear combination. One mode (M1) shows a nearly closed cyclonic or anti-cyclonic circulation anomaly in the Arctic Basin and its marginal seas, resembling to a large extent the response of sea ice motion to the Arctic Oscillation (AO), as many previous studies have revealed. The other mode (M2) displays a coherent cyclonic or anti-cyclonic circulation anomaly with its center close to the Laptev Sea, which has not been identified in previous observational studies. In fact, M1 and M2 respectively reflect the responses of sea ice motion to two predominant modes of winter surface wind variability north of 70 ? N, which well correspond, with slight differences, to the first two modes of EOF analysis of winter monthly mean SLP north of 70 ? N. These slight differences in SLP anomalies lead to a difference of M2 from the response of sea ice motion to the dipole anomaly. Although the AO significantly influences sea ice motion, it is not crucial for the existence of M1. The new sea ice motion mode (M2) has the largest variance and clearly differs from the response of winter monthly mean sea ice motion to the dipole anomaly in SLP fields, and corresponding SLP anomalies also show differences compared to the dipole anomaly. This study indicates that in the Arctic Basin and its marginal seas, slight differences in SLP anomaly patterns can force distinctly different sea ice motion anomalies.展开更多
The present paper deals with the distribution patterns of heavy metals and the associated influenc- ing factors in the Yalu River Estuary and its adjacent coastal waters. Based upon the analysis of the surficial and c...The present paper deals with the distribution patterns of heavy metals and the associated influenc- ing factors in the Yalu River Estuary and its adjacent coastal waters. Based upon the analysis of the surficial and core sediments measurements, the pollution of heavy metal and potentiM ecological risk were evaluated. The burial flux and contents of heavy metals (except for copper) have been continuously increasing since the 1920s. Therefore, the gross potential ecological risk for the sedi- ments was high or very high, and the study area was endangered by heavy metals contamination. Heavy metals originated mainly from upstream pollutant input, correlation analysis showed that chromium, nickel, zinc~ cadmium, lead, arsenic, and mercury in the sediments of the middle and west channels as well as the sea area of the western Yalu River Estuary concentrations were most probably derived from similar sources. In contrast, the metal of copper most probably originated from sources different from the other metals. Preliminary studies indicate that copper contamina- tion was most likely the result of emission from mining activities situated at the upstream of the river. The contents of heavy metals in the sediments of estuarine turbidity maximum zone of Yalu River were larger than those of any other areas in the middle channel. With large portion of fine sediments, weaker hydrodynamics, and richer sources of heavy metals, the sediments of the west channel, were even more enriched with heavy metals than those of the middle channel.展开更多
To better understand the physicochemical conditions in af fecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3 rd and 23 th May, 2010. ...To better understand the physicochemical conditions in af fecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3 rd and 23 th May, 2010. The phytoplankton community, including Bacillariophyta(105 taxa), Pyrrophyta(54 taxa), Chrysophyta(1 taxon) and Chlorophyta(2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.展开更多
文摘Objectives: The general purpose of this study is to detection and determination of the concentration level of dichlorodiphenyltrichloroethane (DDT) in some commercially available marine dry fishes and to investigate the contamination status of dichlorodiphenyltrichloroethane (DDT) of these dry fishes. Methods: Samples were collected from six largest dry fish markets (three from Chittagong district and three from Cox’s Bazar district) and four types of dry fishes were taken in this study are Ribbon fish (Lepturacanthus savala), Sin Croaker (Johnius dussumieri), Bombay duck (Harpodon nehereus) and Shrimp (mixed species). Total numbers of samples were 24 that were analyzed in the laboratory. Results: The results of the study show that the mean concentrations of dichlorodiphenyltrichloroethane (DDT) in the samples of Ribbon fish, Bombay duck and Sin croaker were ranged between 130.85 - 153.47ppb, 125.21 - 181.4ppb and 119.86 – 208.65ppb respectively. The mean concentrations of dichlorodiphenyltrichloroethane (DDT) were found at a lower amount in shrimp sp. than the other. Conclusions: This result indicates that the concentration of dichlorodiphenyltrichloroethane (DDT) in dry fish samples from Bangladesh are higher and may causes chronic disease and potential long-term risk for human health.
文摘A growing increase in the world’s population and a gradual decline in poverty necessitate a search for new sources of protein in order to guarantee food security. Aquaculture has been identified as a potential sector capable of meeting the requirements for increased protein production without making excessive demands on the ecosystem. Although water makes up 70% of the earth’s surface, aquaculture cannot feasibly be practised everywhere;it requires a unique set of natural, social and economic resources to be managed in an environmentally responsible way. Finding suitable sites for aquaculture is becoming an ever increasing problem in the development of the sector as precautions need to be taken in setting up sites to ensure appropriate environmental characteristics exist and that good water quality can be maintained. Additionally, the effects of aquaculture on coastal and inland resources must be clearly determined to implement policies and regulatory frameworks to control its impact. Marine cage farming is gaining momentum, specifically in the Mediterranean and Black Sea coastal regions. For these sites to be further developed there is a need to minimize the effects on the environment and conflicts with other coastal users. To this aim the concept of allocated zones for aquaculture (AZA) is being adopted to provide specific areas for marine aquaculture to avoid environmental degradation. When choosing an (AZA) suitable site, it is vital to calculate ‘carrying capacity’ to reduce the risks and to protect the marine ecosystems. In this study the MERAMOD model was used to investigate the carrying capacity of marine fish farms. Modelling offers the possibility to simulate and predict the environmental impact of fish farms.
文摘The Mediterranean Sea is home to an interesting biodiversity. The current cumulative and descriptive study aims to enumerate some relatively large marine mammals, reptiles, and fishes that have been spotted, caught, by-caught, or stranded on the coast of the Gaza Strip, Palestine, which extends about 42 km along the Mediterranean Sea. This 20-year study from 2003 to 2022 relied much on frequent field visits, meetings, and discussions with stakeholders, following local media sites and social media pages, and photography. The study recorded at least 26 giants or relatively large marine organisms on the Mediterranean coast of the Gaza Strip, Palestine. Certainly, the coming years may bring other marine organisms of relatively large sizes. Marine mammals included three species of cetaceans with the Fin Whale (Balaenoptera physalus) being the largest mammal and even the largest animal ever recorded in this study. Marine reptiles included three species of sea turtles, the largest of which is the Leatherback Sea Turtle (Dermochelys coriacea), which is in fact the world’s largest sea turtle. The bony fishes were represented by ten species, the largest of which was the Ocean Sunfish (Mola mola), which is the largest bony fish in the world. The cartilaginous fishes included ten species with the largest specimens encountered were the Shortfin Shark (Isurus oxyrinchus), Bluntnose Sixgill Shark (Hexanchus griseus), Scalloped Hammerhead Shark (Sphyrna lewini), and Giant Devil Ray (Mobula mobular). Seabirds were not included in the study. The Alexandria Pompano (Alectis alexandrinus) and the Silver-Cheeked Toadfish (Lagocephalus sceleratus), which are bony fishes, appear to be the relatively smallest marine organisms recorded here. In conclusion, the role of the various parties must be coordinated to ensure the sustainability of human activities and their compatibility with the task of conserving local marine biota, including the gigantic or relatively large ones.
文摘To protect the sustainability of the benefits from seas and near coastal areas,which have under the effect of the very complex hydrodynamic conditions and intensive human activities,without disrupting the balance of nature,it is necessary to image the status of the seafloor features.Therefore,this study presents the deformations,depositional conditions,underwater constructions,and the other non-natural impacts on the seafloor of the nearshore area at western Istanbul(between Küçükçekmece and Büyükçekmece lagoons)where it intensely used by the citizens.The results of the study may provide some guidance for understanding the impacts and risk factors of uses that are or will be conducted in coastal and/or near-coastal areas.Construction planning for civil coastal structures and areas should be done in great harmony with nature,minimizing negative environmental impacts.Although sediment distribution in the area is generally quite complex,the current state of the region,wave action,hydrodynamic conditions,the amount of material transported from the land,and bathymetry are important influencing factors.The seafloor has been damaged primarily by anchor deformation and associated bottom scanning,as well as disturbing trawl tracks.The seafloor was observed as partially shallowing near the constructions(such as natural gas pipelines,fishermen’s shelter,and port piles)of coastal areas and associated with sand deposits.Therefore,scanning the seafloor using side-scan sonar may provide valuable frequency data to prevent future disruptions.
基金jointly supported by the Natural Science Foundation of Shandong Province (No.ZR2022YQ54)the Marine S&T Fund of Shandong Province for Laoshan Laboratory (No.2021QNLM020002)the Taishan Scholars Program (No.tsqn202306297)。
文摘Mechanical properties of hydrate-bearing fine-grained sediments are crucial to effectively mitigate environmental risks caused by artificial and natural decomposition of natural gas hydrates,and the decomposition can induce laterally confined deformation.To explore the effect of natural gas hydrates on laterally confined compression properties,consolidation tests are conducted on remolded hydrate-free and hydrate-bearing samples by using natural fine-grained sediments collected from the northern South China Sea as the host sediments,and empirical equations are developed based on the analyses of consolidation characteristics.The results show that vertical loading induces a reduction in void ratio,and the reduction increases with decreasing hydrate saturation when samples are subjected to the same vertical stress change.The compression index of samples is about 0.53 whether there is hydrate or not,but the yield stress of samples increases sharply with increasing hydrate saturation once beyond the critical value.The coefficient of volume compression and the coefficient of consolidation of hydrate-bearing samples both increase firstly and then decrease to a relative stable level with increasing vertical stress,and the transition occurs at 200 kPa.The average consolidation degree with elapsed time increases rapidly under low vertical stresses,slowly under median vertical stresses,and under high vertical stresses,the consolidation increases a little faster but still slower than those under low vertical stresses.
基金The US Department of State for sponsoring undergraduate exchange program。
文摘Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.
基金The Fundação para a Ciência e Tecnologia(FCT-MEC,Portugal)under contract No.UIDB/04326/2020 awarded to Gerardo Zardithe South African Research Chairs Initiative(SARChI)of the Department of Science and Technology and the National Research Foundation of South Africa under contract No.64801 awarded to Christopher McQuaid+1 种基金the Fund of European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie contract No.101034329the WINNINGNormandy Program supported by the Normandy Region for Gerardo Zardi.
文摘Marine heatwaves(MHWs)caused by anthropogenic climate change are becoming a key driver of change at the ecosystem level.Thermal conditions experienced by marine organisms across their distribution,particularly towards the equator,are likely to approach their physiological limits,resulting in extensive mortality and subsequent changes at the population level.Populations at the margins of their species’distribution are thought to be more sensitive to climate-induced environmental pressures than central populations,but our understanding of variability in fitness-related physiological traits in trailing versus leading-edge populations is limited.In a laboratory simulation study,we tested whether two leading(Iceland)and two trailing(Spain)peripheral populations of the intertidal macroalga Corallina officinalis display different levels of maximum potential quantum efficiency(Fv/Fm)resilience to current and future winter MHWs scenarios.Our study revealed that ongoing and future local winter MHWs will not negatively affect leading-edge populations of C.officinalis,which exhibited stable photosynthetic efficiency throughout the study.Trailing edge populations showed a positive though non-significant trend in photosynthetic efficiency throughout winter MHWs exposure.Poleward and equatorward populations did not produce significantly different results,with winter MHWs having no negative affect on Fv/Fm of either population.Additionally,we found no long-term regional or population-level influence of a winter MHWs on this species’photosynthetic efficiency.Thus,we found no statistically significant difference in thermal stress responses between leading and trailing populations.Nonetheless,C.officinalis showed a trend towards higher stress responses in southern than northern populations.Because responses rest on a variety of local population traits,they are difficult to predict based solely on thermal pressures.
基金supported in part by the National Natural Science Foundation of China(General Program)under Grants 62073193 and 61873333in part by the National Key Research and Development Project(General Program)under Grant 2020YFE0204900in part by the Key Research and Development Plan of Shandong Province(General Program)under Grant 2021CXGC010204.
文摘Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields,which limits the diagnostic performance.To solve this problem,a novel transfer residual Swin Transformer(RST)is proposed for rolling bearings in this paper.RST has 24 residual self-attention layers,which use the hierarchical design and the shifted window-based residual self-attention.Combined with transfer learning techniques,the transfer RST model uses pre-trained parameters from ImageNet.A new end-to-end method for fault diagnosis based on deep transfer RST is proposed.Firstly,wavelet transform transforms the vibration signal into a wavelet time-frequency diagram.The signal’s time-frequency domain representation can be represented simultaneously.Secondly,the wavelet time-frequency diagram is the input of the RST model to obtain the fault type.Finally,our method is verified on public and self-built datasets.Experimental results show the superior performance of our method by comparing it with a shallow neural network.
基金The National Key Research and Development Program of China under contract No.2019YFE0124700the Scientific Research Foundation of Third Institute of Oceanography,MNR under contract Nos 2019018 and 2019017+2 种基金the National Natural Science Foundation of China under contract Nos 42076038,U22A20585 and 41776099the Guangdong Basic and Applied Basic Research Foundation under contract No.2021A1515011886the STU Scientific Research Start-Up Foundation for Talents under contract No.NTF18011.
文摘The biological pump,driven by phytoplankton production and death,plays a crucial role in the ocean’s sequestration of atmospheric CO_(2).In particular,marginal seas with high primary productivity show a significant capacity for carbon fixation.Variations in phytoplankton biomass and community structure are key factors influencing the efficiency of the marine biological pump.The Taiwan Strait(TS)is a unique shallow conduit that connects the East China Sea(ECS)and the South China Sea(SCS),which are subject to seasonal monsoons and episodic events(e.g.,typhoons and floods).Thus,its planktonic ecosystem is significantly influenced by physical processes such as strong ocean currents,coastal upwelling and river discharge,resulting in noticeable seasonal variability.In this study,we examined spatiotemporal patterns of phytoplankton biomass and community structure using phytoplankton-sourced biomarkers from suspended particles in surface waters across all four seasons from 2019 to 2020 in the TS.The findings highlight notable seasonal disparities in phytoplankton biomass,with spring and summer exhibiting significantly higher levels compared to autumn and winter.In order to determine phytoplankton ecosystem responses to various physical and biological processes on a seasonal scale,we used Empirical Orthogonal/Eigen Function(EOF)analysis to investigate the covarying spatiotemporal patterns of:marine-sourced biomarkers and terrestrial-sourced biomarkers in surface suspended particles,a biomass indicator(Chl a),water-mass indicators[sea surface temperature(SST),sea surface salinity(SSS),nutrients],and a hydrodynamic indicator[total suspended solids at surface/bottom water,(TSS_S and TSS_B)].The results identified six physical-biological coupling modes that influence seasonal variations in marine phytoplankton ecosystems within the energetic strait system.Additionally,an in-depth understanding of the coupling between physical process and lipid biomarker signals from suspended particles in the contemporary marine environment can offer valuable insights for interpreting ancient sediment records of phytoplankton ecosystem evolution in the TS.
基金The Guangdong Basic and Applied Basic Research Foundation under contract Nos 2024A1515012628the National Natural Science Foundation of China under contract Nos 41876059 and 42372213+4 种基金the Open Research Fund Program of Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards,China Geological Survey under contract No.ZSORS-22-5the Shantou University Scientific Research Foundation for Talents under contract No.NTF20028China-Association of Southeast Asian Nations(ASEAN)Maritime Cooperation Fund Project under contract No.12120100500017001China Geological Survey Projects under contract Nos DD20211553,DD20221710,and DD20230415the Science and Technology Innovation Fund of Command Center of Integrated Natural Resources Survey Center under contract No.KC20230017.
文摘The deltas serve as the primary interactive zone where terrestrial and marine environments converge,playing a pivotal role in the coastal deposition.In the Holocene,climate changes and sea level fluctuation are the principal driving factors in the evolution of deltas.However,human activities such as the construction of dams and reservoirs in the Anthropocene have significantly altered sediment transport in rivers,leading to depositional pattern variation during deltaic evolution.In this study,we have conducted a comparative analysis of the morphological variations(1986-2021)in the barrier system of the Hanjiang River Delta(HRD)using satellite remote sensing(SRS)method.Additionally,we have examined the lithological changes and facies alterations observed in eight boreholes on the present barrier spit.Our findings indicate that the intensification of anthropogenic activities led to a significant reduction in the sediment flux of the Hanjiang River(HR),resulting in depocenter landward migration at the estuary.SRS analysis reveals their periodical morphological characteristics and spatial variations of estuarine sandbars(1986-1992),barrier islands-lagoons(1993-2009),and barrier spits(2010-2021)during 1986 to 2021.The stratigraphy of boreholes demonstrates a south-to-north facies transition from lagoon to lagoon-barrier spit and barrier spit in vertical lithology.Therefore,the depositional evolution of the HRD barrier system is categorized into three phases:estuarine sandbar-barrier island phase(1986-1998);barrier island-lagoon phase(1999-2009);and barrier spit phase(2010-2021).During the estuarine sandbar-barrier island phase,fluvial processes played a predominate role in the deposition.Consequently,with a significant decrease in river sediment load,the dominant factors driving depositional processes shifted towards wave action and alongshore current.Based on the conceptual model in the Holocene,we propose a modified depositional model of wave-dominated deltas during Anthropocene that encompasses three evolutionary phases:estuarine sandbars and delta front platforms,barrier island-lagoon formation and landward migration of barrier spits.This pattern highlights that human-induced reduction in river sediment flux has led to a seaward deltaic progradation driven by barrier landward migration.
文摘During the production of nitrile rubber, significant amounts of nitrogen in the form of ammonium are generated in the wastewater. The discharge of this high-nitrogen wastewater can lead to serious environmental issues, including eutrophication, disruption of aquatic ecosystems, and groundwater contamination. To mitigate these impacts, this research explored the bioremediation capabilities of the macroalgae Ulva lactuca (Chlorophyta) for removing nitrogen from nitrile rubber production wastewater. The study employed single-phase and Michaelis-Menten decay models based on ammonium consumption, using various dilutions of wastewater to identify the optimal concentration for treatment. The physiological state of the macroalgae was monitored by measuring the photosynthetic capacity and specific growth rate during the experiments. In the presence of U. lactuca, ammonium concentrations decreased in all treatment groups, confirming that the ammonium kinetics conformed to both applied models. Our results show that U. lactuca effectively reduces ammonium concentrations, with an approximate removal rate of 0.020 µM·g−1·min−1 across different wastewater concentrations (70%, 80%, 90%, and 100%). Notably, the treatments with 70%, 80%, and 90% wastewater strength achieved about 67% reduction in ammonium, demonstrating the alga’s capacity to treat high-nitrogen wastewater. The photosynthetic performance of U. lactuca initially declined in control conditions but stabilized across all treatments, highlighting its adaptability. The kinetic analysis using the Michaelis-Menten model indicated a Vmax of 1342 μM·g−1·DMh−1, suggesting a robust capacity for ammonium uptake when fully saturated. Our study underscores the potential of Ulva lactuca as a cost-effective and efficient agent for wastewater bioremediation, particularly in settings with high nitrogen loads.
基金supported by the National Key R&D Plan of China(Grant No.2023YFB3210400)the National Natural Science Foundation of China(No.62174101)+2 种基金the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)the Fundamental Research Funds of Shandong University(2020QNQT001)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,the Natural Science Foundation of Qingdao-Original exploration project(No.24-4-4-zrjj-139-jch).
文摘Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
基金Project(07dz12028) supported by the Science Program of Science and Technology Commission of Shanghai Municipality,China
文摘In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.KZCX1-YW-12-01the National Science Fund for Distinguished Young Scholars under contract No.40625017+1 种基金the National Natural Science Foundation of China(Key Program)under contract No.40830851the National Program on Key Basic Research Project(973Program)under contract No.2007CB816004
文摘A three-dimensional model is used to investigate the mechanism of the South China Sea (SCS) winter counter-current (also known as the SCS Warm Current, or the SCSWC), which flows against the wind. The model can reproduce the structure of the band-like currents over the northern shelf of the SCS, including the westward coastal current and slop current, and the SCSWC sandwiched in between. Sensitivity experiments are designed to understand the different roles of Ekman pumping of the SCSWC at different longitude. The results show that the Ekman pumping drives the SCSWC in the west segment. In the east, it is not the Ekman pumping but the intrusion of the Kuroshio that drives the SCSWC.
基金The National Natural Science Foundation of China under contract No. 40266001
文摘With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.
文摘Nutrient loadings were measured for surface seawater and bottom sediments of semi intensive and improved extensive shrimp culture pond, adjacent estuary, and fallow land in the south east coastal region of Bangladesh during August, 2000—January, 2001 to evaluate the impact of shrimp culture. The mean levels of nutrients found in the pond surface water were 108 780 mg/L for CaCO 3, 0 526 mg/L for NH + 4 N, 3 075 wt% for organic carbon, 7 00 mg/L for PO 4 P, 5 57 mg/L for NO 3 N, and 7 33 mg/L for chlorophyll a. The maximum mean value of H 2S(0 232 mg/L) was found in estuarine water. Nutrients loading were found to be decreased with distance from the shrimp farm discharge unit in estuarine water. The mean level of organic matter, total nitrogen, and organic carbon were found in higher concentrations in sediments of cultured pond compared to bottom soil of adjacent fallow land at the same elevation. Extractable Ca values were found in higher concentration(550 33 ppt) in adjacent fallow land, as the shrimps for molting in shrimp ponds use extractable Ca. The relation between seawater H 2S value and sediment pH ( r= -0 94); sediment organic carbon and sediment pH values ( r= -0 76), sediment total nitrogen and sediment pH ( r= - 0 74) were found to be highly negatively correlated. Whereas the relation between seawater H 2S value and sediment total nitrogen ( r= 0 92), water NH + 4 N and sediment pH ( r= 0 66) were found to be positively correlated. The results revealed that load of nutrients at eutrophic level in estuarine water, and decrease of soil pH; leading to acid sulphate soil formation indicates a negative impact of shrimp culture.
基金supported by the fund from the Ministry of Scientific Research and Technology, Tunisia (Research Unit of Biochemical and Environmental Toxicology, UR04AGR05)
文摘The acute effects of commercial formulation of chlorpyrifos-ethyl (Dursban ) and the secondary treated industrial/urban effluent (STIUE) exposure on acetylcholinesterase (ACHE) and butyrylcholinesterase (BuChE) activities in hepatopancreas and gills of Mediterranean crab Carcinus maenas were investigated. After 2 d of exposure to chlorpyriphos-ethyl, the AChE activity was inhibited in both organs at concentrations of 3.12 and 7.82 μg/L, whereas the BuCHE was inhibited only at higher concentration 7.82 μg/L of commercial preparation Dursban~. The exposure of crabs to Dursban (3.12 μg/L) showed a significant decrement of ACHE activity at 24 and 48 h, whereas the BuChE was inhibited only after 24 h and no inhibition for both enzymes was observed after 72 h. Moreover, a significant repression of AChE activity was observed in both organs of C. maenas exposed to 5% of STIUE. Our experiments indicated that the measurement of AChE activity in gills and hepatopancreas of C. maenas would be useful biomarker of organophosphorous (OP) and of neurotoxic effects of STIUE in Tunisia.
基金supported by Interactionsof the External Forcing in the Northern Mid-high Latitudes with Atmospheric Circulations (GYHY200906017)the Coordinated Observation and Prediction of Earth System(COPES) project (GYHY200706005)the National Natural Science Foundation of China (Grant No. 40875052),and the Alaska Ocean Observing System (AOOS)
文摘Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979–1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960–2002), we investigated the spatiotemporal evolution of the leading sea ice motion mode (based on a complex correlation matrix constructed of normalized sea ice motion velocity) and their association with sea level pressure (SLP) and the predominant modes of surface wind field variability. The results indicate that the leading winter sea ice motion mode’s spatial evolution is characterized by two alternating and distinct sea ice modes, or their linear combination. One mode (M1) shows a nearly closed cyclonic or anti-cyclonic circulation anomaly in the Arctic Basin and its marginal seas, resembling to a large extent the response of sea ice motion to the Arctic Oscillation (AO), as many previous studies have revealed. The other mode (M2) displays a coherent cyclonic or anti-cyclonic circulation anomaly with its center close to the Laptev Sea, which has not been identified in previous observational studies. In fact, M1 and M2 respectively reflect the responses of sea ice motion to two predominant modes of winter surface wind variability north of 70 ? N, which well correspond, with slight differences, to the first two modes of EOF analysis of winter monthly mean SLP north of 70 ? N. These slight differences in SLP anomalies lead to a difference of M2 from the response of sea ice motion to the dipole anomaly. Although the AO significantly influences sea ice motion, it is not crucial for the existence of M1. The new sea ice motion mode (M2) has the largest variance and clearly differs from the response of winter monthly mean sea ice motion to the dipole anomaly in SLP fields, and corresponding SLP anomalies also show differences compared to the dipole anomaly. This study indicates that in the Arctic Basin and its marginal seas, slight differences in SLP anomaly patterns can force distinctly different sea ice motion anomalies.
基金The National Natural Science Foundation of China under contract Nos 40976051,40976036,40871019,40506022and 40506013
文摘The present paper deals with the distribution patterns of heavy metals and the associated influenc- ing factors in the Yalu River Estuary and its adjacent coastal waters. Based upon the analysis of the surficial and core sediments measurements, the pollution of heavy metal and potentiM ecological risk were evaluated. The burial flux and contents of heavy metals (except for copper) have been continuously increasing since the 1920s. Therefore, the gross potential ecological risk for the sedi- ments was high or very high, and the study area was endangered by heavy metals contamination. Heavy metals originated mainly from upstream pollutant input, correlation analysis showed that chromium, nickel, zinc~ cadmium, lead, arsenic, and mercury in the sediments of the middle and west channels as well as the sea area of the western Yalu River Estuary concentrations were most probably derived from similar sources. In contrast, the metal of copper most probably originated from sources different from the other metals. Preliminary studies indicate that copper contamina- tion was most likely the result of emission from mining activities situated at the upstream of the river. The contents of heavy metals in the sediments of estuarine turbidity maximum zone of Yalu River were larger than those of any other areas in the middle channel. With large portion of fine sediments, weaker hydrodynamics, and richer sources of heavy metals, the sediments of the west channel, were even more enriched with heavy metals than those of the middle channel.
基金Supported by the National Key Scientifi c Research Program(No.2015CB954002)the National Natural Science Foundation of China(Nos.41276124,41676112)+2 种基金the University Innovation Team Training Program for Tianjin(No.TD12-5003)the Cheung Kong Scholars Program and of ChinaExploration Program of Ocean with Science and Technology of Tianjin(KJXH2013-22)to Jun Sun
文摘To better understand the physicochemical conditions in af fecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3 rd and 23 th May, 2010. The phytoplankton community, including Bacillariophyta(105 taxa), Pyrrophyta(54 taxa), Chrysophyta(1 taxon) and Chlorophyta(2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.