期刊文献+
共找到798篇文章
< 1 2 40 >
每页显示 20 50 100
Formation of primary intermetallic phases in the interaction of Fe-containing melts of recycled Al-Si alloys with Al_(2)O_(3)and Al_(2)O_(3)-C filter materials:Aμ-CT study
1
作者 H.Becker B.Fankhänel +3 位作者 A.Charitos S.Baier-Stegmaier A.Leineweber W.Pantleon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期88-100,共13页
Fe is the most detrimental impurity element in recycled Al-Si alloys due to the formation of brittle,primary,Fe-containing,intermetallic particles during solidification.Their removal from the Al-Si melts e.g.by filtra... Fe is the most detrimental impurity element in recycled Al-Si alloys due to the formation of brittle,primary,Fe-containing,intermetallic particles during solidification.Their removal from the Al-Si melts e.g.by filtration can reduce the Fe content.New active filter materials can facilitate the formation of these particles for their removal and contribute to the production of high-quality,recycled Al-Si alloys.The interaction of the alloy with the filter material can lead to modification of the thermodynamics of the alloy or of the kinetics of the particle formation.Time-resolved,three-dimensional microstructural inves-tigations have been carried out to study the formation of primary intermetallic particles in Al7.1Si1.5Fe and Al7.1Si0.75Fe0.75Mn alloy melts in contact with Al_(2)O_(3)and Al_(2)O_(3)-C filter substrate material during a melt conditioning treatment at 620°C.The microstructures,in particular the primary intermetallic particlesαc andαh,have been characterized by computed tomography(CT)and supplementary scanning electron microscopy(SEM).As expected by thermodynamics,the total volume fraction of primary par-ticles remains unchanged by the interaction with the substrate materials.However,kinetic advantages for Fe-removal efficiency can be achieved by an accelerated and preferred selective particle formation in contact with the Al_(2)O_(3)-C material.Furthermore,particle formation is discussed in view of its different stages:nucleation,growth,and ripening. 展开更多
关键词 Aluminum alloys Intermetallic phases Solidification X-ray computed tomography Scanning electron microscopy
原文传递
Tuning the particle size,physical properties,and photocatalytic activity of Ag_(3)PO_(4)materials by changing the Ag^(+)/PO_(4)^(3-)ratio 被引量:1
2
作者 Hung N M Oanh L T M +4 位作者 Chung D P Thang D V Mai V T Hang L T Minh N V 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期561-568,共8页
This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocataly... This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocatalyst that is fabricated,using a facile precipitation method,from AgNO_(3)and Na2HPO_(4)·12H_(2)O.The material characterizations were carried out using x-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive x-ray spectroscopy(EDX),Brunauer–Emmett–Teller(BET)surface area,Fourier transform infrared(FTIR)absorption,Raman scattering,x-ray photoelectron spectroscopy(XPS),UV-vis absorption,and photoluminescence(PL).The results show that Ag_(3)PO_(4)crystallizes better when the excess PO_(4)^(3-)content increases,and the lattice parameters decrease slightly,while the crystal diameter and the particle size increase.This change is also observed in the Raman scattering and FTIR spectra with the increase in the vibration frequency of the[PO_(4)]group.The compression of the[PO_(4)]unit was also confirmed in the XPS spectra with the shift of P 2p peaks toward higher binding energy.The photocatalytic results showed that the samples synthesized from excess PO_(4)^(3-)solution exhibited higher photocatalytic performance compared to the sample with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.A sample prepared from the precursor solution with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.5 was optimal for RhB decomposition under both visible light and natural sunlight,completely decomposing 10 ppm RhB after 15 minutes of xenon lamp irradiation and after 60 minutes under solar light irradiation.This is attributed to the high crystallinity,small particle size and low electron–hole recombination rate of the sample. 展开更多
关键词 morphology PHOTOCATALYTIC Ag^(+)/PO_(4)^(3-)ratio visible light
下载PDF
Development of nickel based cermet anode materials in solid oxide fuel cells–Now and future 被引量:7
3
作者 Yu Liu Zongping Shao +1 位作者 Toshiyuki Mori San Ping Jiang 《Materials Reports(Energy)》 2021年第1期101-126,共26页
High temperature solid oxide fuel cell(SOFC)is the most efficient and clean energy conversion technology to electrochemically convert the chemical energy of fuels such as hydrogen,natural gas and hydrocarbons to elect... High temperature solid oxide fuel cell(SOFC)is the most efficient and clean energy conversion technology to electrochemically convert the chemical energy of fuels such as hydrogen,natural gas and hydrocarbons to electricity,and also the most viable alternative to the traditional thermal power plants.However,the power output of a SOFC critically depends on the characteristics and performance of its key components:anode,electrolyte and cathode.Due to the highly reducing environment and strict requirements in electrical conductivity and catalytic activity,there are limited choices in the anode materials of SOFCs,particularly for operation in the intermediate temperature range of 500–800C.Among them,Ni-based cermets are the most common and popular anode materials of SOFCs.The objective of this paper is to review the development of Ni-based anode materials in SOFC from the viewpoints of materials microstructure,performance and industrial scalability associated with the fabrication and optimization processes.The latest advancement in nano-structure architecture,contaminant tolerance and interface optimization of Ni-based cermet anodes is presented.And at the end of this paper,we propose and appeal for the collaborative work of scientists from different disciplines that enable the inter-fusion research of fabrication,microanalysis and modelling,aiming at the challenges in the development of Ni-based cermet anodes for commercially viable intermediate temperature SOFC or IT-SOFC technologies. 展开更多
关键词 Ni-based cermet anode Intermediate temperature solid oxide fuel cell ACTIVITY Interface optimization Carbon deposition Sulfur poisoning Multidisciplinary collaborative work
下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:1
4
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–Al alloy EXTRUSION BENDING Precipitation Microstructure
下载PDF
Unfolding the structure-property relationships of Li_(2)S anchoring on two-dimensional materials with high-throughput calculations and machine learning
5
作者 Lujie Jin Hongshuai Wang +2 位作者 Hao Zhao Yujin Ji Youyong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期31-39,I0002,共10页
Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential stra... Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential strategy is to design anchoring materials(AMs)to appropriately adsorb Li-S species.Herein,we propose a new three-procedure protocol,named InfoAd(Informative Adsorption)to evaluate the anchoring of Li_(2)S on two-dimensional(2D)materials and disclose the underlying importance of material features by combining high-throughput calculation workflow and machine learning(ML).In this paradigm,we calculate the anchoring of Li_(2)S on 12552D A_(x)B_(y)(B in the VIA/VIIA group)materials and pick out 44(un)reported nontoxic 2D binary A_(x)B_(y)AMs,in which the importance of the geometric features on the anchoring effect is revealed by ML for the first time.We develop a new Infograph model for crystals to accurately predict whether a material has a moderate binding with Li_(2)S and extend it to all 2D materials.Our InfoAd protocol elucidates the underlying structure-property relationship of Li_(2)S adsorption on 2D materials and provides a general research framework of adsorption-related materials for catalysis and energy/substance storage. 展开更多
关键词 Adsorption Anchoring material Li-S battery Extreme gradient boosting Graph neural network Material geometry Semi-supervised learning
下载PDF
Release characteristics of different diameter ultrafine fibers as antibacterial materials
6
作者 Zhiqiang Wei Erniao Liu +2 位作者 Hao Li Zhimei Wei Zhi lv 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2021年第2期1-10,共10页
Although the electrospinning technique has been devoted to promoting therapeutic purposes as a drug carrier,however,there are still many fundamental problems in this area.This work focuses on a comparison of various d... Although the electrospinning technique has been devoted to promoting therapeutic purposes as a drug carrier,however,there are still many fundamental problems in this area.This work focuses on a comparison of various diameter polyethersulfone(PES)electrospun ultrafine fibers as an-timicrobial materials.The fibrous morphology,antimicrobial agent distribution,thermally property,and biocompatibility evaluation of PES-based ultrafine fibers were systematically in-vestigated.The results demonstrated that the PES-based ultrafine fibers were suitable as anti-microbial material.Furthermore,the drug release behavior and mechanism were studied through total immersion.The release mechanism was confirmed to Fickian diffusion.It was revealed that the drug max release amount(71.5%)and release rate(7.71)are the highest for the smallest diameter ultrafine fibers.Meanwhile,the antimicrobial activity of PES ultrafine fibers is also inversely correlated with the diameter of fiber.The electrospun PES fibers would control their release behavior through the diameter and have a potential application in the wound dressings,such as chronic osteomyelitis and exposure injury. 展开更多
关键词 ELECTROSPINNING POLYETHERSULFONE ultrafine fibers drug release antimicrobial activity
下载PDF
A Facile Li_(2)TiO_(3) Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides 被引量:1
7
作者 Naifang Hu Yuan Yang +5 位作者 Lin Li Yuhan Zhang Zhiwei Hu Lan Zhang Jun Ma Guanglei Cui 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期41-48,共8页
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat... Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries. 展开更多
关键词 full concentration gradient lithium-rich layered oxides structure stability surface modification
下载PDF
Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers 被引量:2
8
作者 Jiaming Wen Geng Chen +7 位作者 Shengchong Hui Zijing Li Jijun Yun Xiaomeng Fan Limin Zhang Qian He Xingmin Liu Hongjing Wu 《Advanced Powder Materials》 2024年第3期1-11,共11页
Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on... Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on.However,the interactions among those microscopic factors and regulation mechanism of macroscopic properties have rarely been investigated.Two-dimensional(2D)transition metal dichalcogenide with tunable structure and phase is one of the most promising electromagnetic wave(EMW)absorbers,which provides a favorable platform for systematically studying the dynamic coupling of its microscopic factors.Herein,we constructed a NaBH_(4) solution-assisted Ar plasma method to modify the 2H-MoS_(2)and 1T-WS_(2)for exploring the regulation mechanism of microscopic factors.For MoS_(2)and WS_(2),NaBH_(4) solution-assisted Ar plasma treatment behaves with different effects on dielectric responses,realizing dynamic coupling of material microscopic factors to collaboratively promote EM losses coupling.Consequently,the MS-D3-0.5(MoS_(2),3 kV voltage,0.5 mol L^(-1)NaBH_(4) solution)displays an optimum effective absorption bandwidth of 8.01 GHz,which is 319.4%more than that of MS-raw sample.This study not only reveals the novel mechanism of plasma induced dynamic coupling of microscopic factors for EMW dissipation,but also presents a new method of plasma-dominated surface modification to optimize the EMW absorption performance. 展开更多
关键词 TMDS Ar plasma Defect Metal single atom Dynamic coupling
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
9
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy INSULATION thermal conductivity
下载PDF
Modeling asymmetric fracture mechanics of Mg alloy wire in drawing process
10
作者 Sunghoon Choi Jongwon Shin +1 位作者 Joung Sik Suh Dongchoul Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2057-2069,共13页
In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmet... In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmetric fracture behavior,especially in the compression region.The aim of this study is to develop a comprehensive damage model for Mg alloy wire that accurately predicts ductile fracture,with a focus on the compression region.A novel experimental method was introduced to measure the ductile fracture of Mg alloy wires under different stress states.The wire drawing process was simulated using the Generalized Incremental Stress-State dependent damage(GISSMO)Model and the Semi-Analytical Model for Polymers(SAMP)model.The damage model's prediction and the experimental results were found to be in excellent agreement,especially in determining crack initiation.Computational analysis established a safe zone diagram for die angle and reduction ratio,and experimental validation confirmed the feasibility of this approach.The proposed damage model can provide a practical and reliable analysis for optimizing the drawing process of Mg alloy wire. 展开更多
关键词 Mg alloy Wire drawing Finite element method Damage model Safe zone diagram
下载PDF
Chemical and mechanical properties of stainless, environment-friendly, and nonflammable Mg alloys (SEN alloys): A review
11
作者 Jong Un Lee Hyun Ji Kim +5 位作者 Sang-Cheol Jin Ye Jin Kim Young Min Kim Bong Sun You Jun Ho Bae Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期841-872,共32页
This review article provides overall understanding of stainless,environment-friendly,and nonflammable Mg alloys(SEN alloys)recently developed at the Korea Institute of Materials Science.SEN alloys are produced by addi... This review article provides overall understanding of stainless,environment-friendly,and nonflammable Mg alloys(SEN alloys)recently developed at the Korea Institute of Materials Science.SEN alloys are produced by adding small amounts of Ca and Y(each<1 wt%)into commercial Mg–Al based alloys,resulting in exceptional ignition and corrosion resistances and impressive mechanical properties.Their main advantages of SEN alloys are as follows.(1)A dense multi-oxide layer of SEN alloys comprising MgO,CaO,and Y_(2)O_(3) impedes the outward dispersion of Mg vapor and the inward penetration of O_(2) during oxidation,thereby enhancing the oxidation and ignition resistances.(2)The presence of Ca-and Y-based second-phase particles in SEN alloys can enhance their corrosion resistance because Ca-containing particles prevent the spread of corrosion,and the replacement of Al-containing particles with less noble ones containing Y(e.g.,Al–Mn–Y or Al–Y particles)retards corrosion.(3)The addition of minor amounts of Ca and Y renders excellent mechanical properties due to improved strengthening effects.These enhanced properties are attributed to more pronounced dynamic recrystallization and grain refining behaviors caused by the second-phase particles during extrusion.(4)Despite the presence of various types of second-phase particles,the fatigue properties of SEN9 alloys are similar to those of commercial AZ91 alloys.(5)Simultaneous introduction of Ca and Y suppresses the formation of Mg17Al12 discontinuous precipitates during aging,leading to the enhanced elongation of aged SEN alloys.(6)Adding mischmetal into the SEN9 alloy leads to a six-fold enhancement in extrudability.Consequently,the studies conducted on SEN alloys demonstrate their excellent ignition and corrosion resistances and mechanical properties,which broaden the industrial applications of Mg alloys by addressing their inherent weaknesses. 展开更多
关键词 SEN magnesium alloy Corrosion resistance Ignition resistance Mechanical properties Extrudability.
下载PDF
Deformation behavior of Mg-Y-Ni alloys containing different volume fraction of LPSO phase during tension and compression through in-situ synchrotron diffraction
12
作者 S.Z.Wu Y.Q.Chi +4 位作者 G.Garces X.H.Zhou H.G.Brokmeier X.G.Qiao M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3631-3645,共15页
The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.T... The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.The micro-yielding,macro-yielding,tension-compression asymmetry and strain hardening behavior of the alloys were explored by combining with deformation mechanisms.The micro-yielding is dominated by basal slip of dynamic recrystallized(DRXed)grains in tension,while it is dominated by extension twinning of non-dynamic recrystallized(non-DRXed)grains in compression.At macro-yielding,the non-DRXed grains are still elastic deformed in tension and the basal slip of DRXed grains in compression are activated.Meanwhile,the LPSO phase still retains elastic deformation,but can bear more load,so the higher the volume fraction of hard LPSO phase,the higher the tensile/compressive macro-yield strength of the alloys.Benefiting from the low volume fraction of the non-DRXed grains and the delay effect of LPSO andγphases on extension twinning,the as-extruded alloys exhibit excellent tension-compression symmetry.When the volume fraction of LPSO phase reaches∼50%,tension-compression asymmetry is reversed,which is due to the fact that the LPSO phase is stronger in compression than in tension.The tensile strain hardening behavior is dominated by dislocation slip,while the dominate mechanism for compressive strain hardening changes from twinning in theα-Mg grains to kinking of the LPSO phase with increasing volume fraction of LPSO phase.The activation of kinking leads to the constant compressive strain hardening rate of∼2500 MPa,which is significantly higher than the tensile strain hardening rate. 展开更多
关键词 Mg-Y-Ni alloys LPSO phase In-situ synchrotron diffraction Micro-yielding Tensile-compression asymmetry Strain hardening
下载PDF
Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
13
作者 王斐 张亚玲 +2 位作者 杨文佳 张会生 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期16-31,共16页
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ... Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field. 展开更多
关键词 valley polarization valley-polarized topological states two-dimensional material
下载PDF
Recent advancements in thermal conductivity of magnesium alloys
14
作者 Hao Lv Jun Tan +7 位作者 Qian Yuan Fanglei Wang Yunxuan Zhou Quan Dong Aitao Tang Jürgen Eckert Bin Jiang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1687-1708,共22页
As highly integrated circuits continue to advance,accompanied by a growing demand for energy efficiency and weight reduction,materials are confronted with mounting challenges pertaining to thermal conductivity and lig... As highly integrated circuits continue to advance,accompanied by a growing demand for energy efficiency and weight reduction,materials are confronted with mounting challenges pertaining to thermal conductivity and lightweight properties.By virtue of numerous intrinsic mechanisms,as a result,the thermal conductivity and mechanical properties of the Mg alloys are often inversely related,which becomes a bottleneck limiting the application of Mg alloys.Based on several effective modification methods to improve the thermal conductivity of Mg alloys,this paper describes the law of how they affect the mechanical properties,and clearly indicates that peak aging treatment is one of the best ways to simultaneously enhance an alloy's thermal conductivity and mechanical properties.As the most frequently used Mg alloy,cast alloys exhibit substantial potential for achieving high thermal conductivity.Moreover,recent reports indicate that hot deformation can significantly improve the mechanical properties while maintaining,and potentially slightly enhancing,the alloy's thermal conductivity.This presents a meaningful way to develop Mg alloys for applications in the field of small-volume heat dissipation components that require high strength.This comprehensive review begins by outlining standard testing and prediction methods,followed by the theoretical models used to predict thermal conductivity,and then explores the primary influencing factors affecting thermal conductivity.The review summarizes the current development status of Mg alloys,focusing on the quest for alloys that offer both high thermal conductivity and high strength.It concludes by providing insights into forthcoming prospects and challenges within this field. 展开更多
关键词 Mg alloy Thermal conductivity Mechanical properties Solute atom Second phase
下载PDF
Behavior of transporting pipeline sections without and with hydrogen exposure based on full-scale tests
15
作者 Nóra Nagy János Lukács 《China Welding》 CAS 2024年第3期14-24,共11页
Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on... Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen. 展开更多
关键词 gas transporting pipeline full-scale pipeline test complex loading condition hydrogen exposure safety factor
下载PDF
In situ observation of the phase transformation kinetics of bismuth during shock release
16
作者 李江涛 王倩男 +7 位作者 徐亮 柳雷 张航 Sota Takagi Kouhei Ichiyanagi Ryo Fukaya Shunsuke Nozawa 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期586-592,共7页
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-... A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process. 展开更多
关键词 phase transformation time-resolved x-ray diffraction(XRD) BISMUTH metastable phase nonequilibrium phase diagram
下载PDF
Oxidation behavior of amorphous and nanocrystalline SiBCN ceramics–Kinetic consideration and microstructure
17
作者 Zibo Niu Daxin Li +5 位作者 Dechang Jia Zhihua Yang Kunpeng Lin Ralf Riedel Paolo Colombo Yu Zhou 《Advanced Powder Materials》 2024年第1期144-156,共13页
In this study,the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were a... In this study,the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were analyzed.The amorphous structure has exceptionally high oxidation activity but presents much better oxidation resistance due to its synchronous oxidation of atomic units and homogeneous composition in the generated oxide layer.However,the oxidation resistance of SiBCN ceramic will degrade during the continual crystallization process,especially for the formation of the nanocapsule-like structure,due to heterogeneous oxidation caused by the phase separation.Besides,the activation energy and rate-controlling mechanism of the atomic units and phases in SiBCN ceramics were obtained.The BNCx(Ea=145 kJ/mol)and SiC(2-x)(Ea=364 kJ/mol)atomic units in amorphous SiBCN structure can be oxidized at relatively lower temperatures with much lower activation energy than the corresponding BN(C)(Ea=209 kJ/mol)and SiC(Ea=533 kJ/mol)phases in crystalline structure,and the synchronous oxidation of the SiC(2-x)and BNCx units above 750C changes the oxidation activation energy of BNCx(Ea=332 kJ/mol)to that similar to SiC(2-x).The heterogeneous oxide layer formed from the nanocapsule-like structure will decrease the activation energy SiC(Ea=445 kJ/mol)and t-BN(Ea=198 kJ/mol). 展开更多
关键词 SiBCN ceramics AMORPHOUS Crystallization Oxidation Kinetics analysis
下载PDF
Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites 被引量:38
18
作者 Andrew T. Smith Anna Marie LaChance +2 位作者 Songshan Zeng Bin Liu Luyi Sun 《Nano Materials Science》 CAS 2019年第1期31-47,共17页
Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphe... Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites. 展开更多
关键词 GRAPHENE OXIDE Reduced GRAPHENE OXIDE GRAPHENE quantum DOTS polymer NANOCOMPOSITES SYNTHESIS PROPERTIES of GRAPHENE and GRAPHENE OXIDE Applications
下载PDF
Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy 被引量:18
19
作者 Nguyen Van PHUONG Manoj GUPTA Sungmo MOON 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1087-1095,共9页
Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed m... Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed micro-cracks structure and a uniform thickness with the thickness of about2.5μm after20min of phosphating treatment.The composition analyzed by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the coating consisted of magnesium phosphate and magnesium hydroxide/oxide compounds.The MPCC showed a significant protective effect on AZ31Mg alloy.The corrosion current of MPCC was reduced to about3%of that of the uncoated surface and the time for the deterioration process during immersion in0.5mol/L NaCl solution improved from about10min to about24h. 展开更多
关键词 magnesium alloy AZ31 alloy magnesium phosphate conversion coating corrosion protection
下载PDF
Homogenization and Recrystallization of Al-6Mg Alloys with and without Sc and Zr 被引量:12
20
作者 姜锋 尹志民 +2 位作者 黄伯云 贺跃辉 陈苏里 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期600-603,共4页
Plates of Al-6Mg alloys with and without scandium were prepared by semi-continuous cast, homogenization, hot-rolled, cold-rolled and annealing. Based on studying of effects of temperature and time on hardness and cond... Plates of Al-6Mg alloys with and without scandium were prepared by semi-continuous cast, homogenization, hot-rolled, cold-rolled and annealing. Based on studying of effects of temperature and time on hardness and conductivity during homogenization, it was found that homogenization of ingot with Sc and Zr can result in dispersion strengthening. Recrystallization temperature of alloys was studied by hardness method and optical metallographic method. Staring recrystallization temperature of Al-6Mg alloys with Sc and Zr is 375 ℃, increasing by 150 ℃ than Al-6Mg alloys without Sc and Zr. Mechanical properties (σ_b, σ_(0.2), δ) of hot-rolled alloy with Sc and Zr are 400 MPa, 280 MPa and 18%; cold-rolled and anneal alloy with Sc and Zr are 420 MPa, 310 MPa and 12% respectively. 展开更多
关键词 aluminum magnesium alloys SCANDIUM ZIRCONIUM HOMOGENIZATION RECRYSTALLIZATION rare earths
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部