The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and susta...The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.展开更多
Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implan...Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.展开更多
In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical p...In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite.展开更多
With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significan...With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significant advantages for fuel efficiency and load capacity.Combined with Ti,a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material.However,because of the great differences in chemical and electrochemical properties between Mg and Ti,it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components.This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples,aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte.The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple.The coating mainly contains MgO and MgAl_(2)O_(4)on the Mg0.6Ca side,and Al_(2)TiO_(5)is the dominant phase on the Ti side.The work also took advantage of synchrotron X-ray computed tomography(CT)scanning to achieve 3D reconstruction of the coating morphology,which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance.The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple.展开更多
In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-...In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.展开更多
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat...The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.展开更多
The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high tem...The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high temperature mechanical and creep properties of AZ91 alloy and its composites with various recycled carbon fibre contents(2.5 and 5 wt.%)and lengths(100 and 500μm)were investigated in the temperature range of 25-200℃.The microstructural characterization showed that the high shear dispersion technique provided the cast composites with finer grains and relatively homogenous distribution of fibres.The materials tested displayed different behaviour depending on the type of loading.In general,while enhancements in the mechanical properties of composites is attributed to the load bearing and grain refinement effects of fibres,the fluctuations in the properties were discussed on the basis of porosity formation,relatively high reinforcement content leading to fibre clustering and interlayer found between the matrix and reinforcement compared to those of AZ91 alloy.The compressive creep tests revealed similar or higher minimum creep rates in the recycled carbon fibre reinforced AZ91 in comparison to the unreinforced AZ91.展开更多
This work reports the influence of alumina fiber reinforcement of an AZ91Nd MMC(metal matrix composite)on the PEO coating formation process in a sodium phosphate-based electrolyte.By comparison with the pure AZ91Nd,th...This work reports the influence of alumina fiber reinforcement of an AZ91Nd MMC(metal matrix composite)on the PEO coating formation process in a sodium phosphate-based electrolyte.By comparison with the pure AZ91Nd,the evolution of alumina fiber during the processing and the characteristics of the resultant PEO coating were investigated.The voltage response as a function of processing time was changed.Lower voltage in the presence of alumina fiber is responsible for the lower coating thickness.The morphology and phase composition of the coatings are also influenced by the incorporation of the fiber.Firstly,the fiber is embedded in the coating and interrupts the continuity of the coating.With increasing processing time,the fiber is found to be reactively incorporated in the coating.The intention to produce a MgAl_(2)O_(4)containing coating is achieved and it is mainly accumulated near the coating surface.However,due to the low number of fibers,the Al content is overall still low and only near to the fibers the MgAl_(2)O_(4)spinel phase can form.展开更多
Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation pro...Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation process,the material’s surface and microstructure are being changed by stresses induced by machining.Hence degradable metal implants need to be fully characterized in terms of the influence of machining on the resulting microstructure and corrosion performance.In this study,micro-computed tomography(μCT)is used for the quantification of the degradation rate of biodegradable implants.To our best knowledge,for the first time quantitative measures are introduced to describe the degradation homogeneity in 3D.This information enables a prediction in terms of implant stability during the degradation in the body.Two magnesium gadolinium alloys,Mg-5Gd and Mg-10 Gd(all alloy compositions are given in weight%unless otherwise stated),in the shape of M2 headless screws have been investigated for their microstructure and their degradation performance up to 56 days.During the microstructure investigations particular attention was paid to the localized deformation of the alloys,due to the machining process.In vitro immersion testing was performed to assess the degradation performance quantified by subsequent weight loss and volume loss(usingμCT)measurements.Although differences were observed in the degree of screw’s near surface microstructure being influenced from machining,the degradation rates of both materials appeared to be suitable for application in orthopedic implants.From the degradation homogeneity point of view no obvious contrast was detected between both alloys.However,the higher degradation depth ratios between the crests and roots of Mg-5Gd ratios may indicated a less homogeneous degradation of the screws of these alloys on contract to the ones made of Mg-10Gd alloys.Due to its lower degradation rates,its more homogeneous microstructure,its weaker texture and better degradation performance extruded Mg-10Gd emerged more suitable as implant material than Mg-5Gd.展开更多
In silico methods to study biodegradable implants have recently received increasing attention due to their potential in reducing experimental time and cost. An important application case for in silico methods are magn...In silico methods to study biodegradable implants have recently received increasing attention due to their potential in reducing experimental time and cost. An important application case for in silico methods are magnesium(Mg)-based biodegradable implants, as they represent a powerful alternative to traditional materials used for temporary orthopaedic applications. Controlling Mg alloy degradation is critical to designing an implant that supports the bone healing process. To simulate different aspects of this biodegradation process, several mathematical models have been proposed with the ultimate aim of replacing laboratory experiments with computational modeling. In this review, we provide a comprehensive and critical discussion of the published models and their performance with respect to capturing the complexity of the biodegradation process. This complexity is presented initially. Additionally, the present review discusses the different approaches of optimizing and quantifying the different sources of errors and uncertainties within the proposed models.展开更多
Magnesium alloys are highly attractive for the use as temporary implant materials, due to their high biocompatibility and biodegradability.However, the prediction of the degradation rate of the implants is difficult, ...Magnesium alloys are highly attractive for the use as temporary implant materials, due to their high biocompatibility and biodegradability.However, the prediction of the degradation rate of the implants is difficult, therefore, a large number of experiments are required. Computational modelling can aid in enabling the predictability, if sufficiently accurate models can be established. This work presents a generalized model of the degradation of pure magnesium in simulated body fluid over the course of 28 days considering uncertainty aspects. The model includes the computation of the metallic material thinning and is calibrated using the mean degradation depth of several experimental datasets simultaneously. Additionally, the formation and precipitation of relevant degradation products on the sample surface is modelled, based on the ionic composition of simulated body fluid. The computed mean degradation depth is in good agreement with the experimental data(NRMSE=0.07). However, the quality of the depth profile curves of the determined elemental weight percentage of the degradation products differs between elements(such as NRMSE=0.40 for phosphorus vs. NRMSE=1.03 for magnesium). This indicates that the implementation of precipitate formation may need further developments. The sensitivity analysis showed that the model parameters are correlated and which is related to the complexity and the high computational costs of the model. Overall, the model provides a correlating fit to the experimental data of pure Mg samples of different geometries degrading in simulated body fluid with reliable error estimation.展开更多
The interaction between organic molecules and biomaterial surfaces determines the fate of biomaterials during their service life,which is also the research hotspots in the field of biomaterials.To understand the mecha...The interaction between organic molecules and biomaterial surfaces determines the fate of biomaterials during their service life,which is also the research hotspots in the field of biomaterials.To understand the mechanism of protein interaction with magnesium(Mg)degradation,alloying elements,immersion time,protein concentration and surface conditions have been previously considered for the effect of proteins on Mg degradation.However,fluid flow,as one of the critical factors,drew little attention in this case.In the present study,the effect of bovine serum albumin(BSA)and fetal bovine serum(FBS)on Mg degradation was compared under static and dynamic conditions.The results revealed that both BSA and FBS slightly decreased the degradation rate of Mg in Hanks’balanced salt solution(HBSS)under static immersion due to the protein adsorption and the formation of a Ca/P-rich top layer on Mg surface,whereas under dynamic flow condition the degradation of Mg was significantly accelerated in the presence of BSA or FBS.The reasons seemed to stem from the weakened protein adsorption on Mg surface in this case and the dynamically enhanced interaction between proteins and ions/products in solutions,which largely weaken the combination of the top Ca/P-rich layer with the inner corrosion product layer.These results highlight the importance of testing conditions for Mg characterization in vitro and the synergistic effect between different parameters on Mg degradation.展开更多
The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were ...The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were performed under various applied stresses(i.e., 60, 80 and100 MPa). Among them, the sand-cast Mg-14Gd-0.4Zr samples examined under 250 ℃/80 MPa for 39 and 95 h, respectively, were chosen to systemically analyze their creep mechanisms using high-angle annular dark field-scanning transmission electron microscopy(HAADF-STEM).The obtained results showed that the enhancement of creep resistance can be mainly attributed to the coherent β' and β'_F phases with an alternate distribution, effectively impeding the basal dislocations movement. However, with the creep time increasing, the fine β'+β'_F precipitate chains coarsened and transformed to semi-coherent β_1 phase and even to large incoherent β phase(surrounded by precipitate-free areas) in grain interiors. The precipitate-free zones(PFZs) at grain boundaries(GBs) were formed, and they could expand during creep deformation. Apart from the main cross-slip of basal and prismatic dislocations, type dislocations were activated and tended to distribute near the GBs. The aforementioned phenomena induced the stress concentrations, consequently leading to the increment of the creep strain.展开更多
In order to improve the ductility of commercial WE43 alloy and reduce its cost,a Mg-3Y-2Gd-1Nd-0.4Zr alloy with a low amount of rare earths was developed and prepared by sand casting with a differential pressure casti...In order to improve the ductility of commercial WE43 alloy and reduce its cost,a Mg-3Y-2Gd-1Nd-0.4Zr alloy with a low amount of rare earths was developed and prepared by sand casting with a differential pressure casting system.Its microstructure,mechanical properties and fracture behaviors in the as-cast,solution-treated and as-aged states were evaluated.It is found that the aged alloy exhibited excellent comprehensive mechanical properties owing to the fine dense plate-shapedβ'precipitates formed on prismatic habits during aging at 200℃for 192 hrs after solution-treated at 500℃for 24 hrs.Its ultimate tensile strength,yield strength,and elongation at ambient temperature reach to 319±10 MPa,202±2 MPa and 8.7±0.3%as well as 230±4 MPa,155±1 MPa and 16.0±0.5%at 250℃.The fracture mode of as-aged alloy was transferred from cleavage at room temperature to quasi-cleavage and ductile fracture at the test temperature 300℃.The properties of large-scale components fabricated using the developed Mg-3Y-2Gd-1Nd-0.4Zr alloy are better than those of commercial WE43 alloy,suggesting that the new developed alloy is a good candidate to fabricate the large complex thin-walled components.展开更多
In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion lay...In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion layer of LDH nanocontainers were formed under ambient pressure conditions without carbonate addition in the electrolyte. The obtained LDH was characterized using experimental(SEM,XRD, TGA, XPS, Raman, etc.) and computational methods(thermodynamic calculation, modeling of possible LDH crystal structures). A comparison of three possible LDHs(LDH-OH,-NO_(3) and-CO_(3)) was performed. Based on the experimental results and crystal simulation approach, it was confirmed, that the mixed LDH-OH/CO_(3) is grown on the surface in the presence of DTPA pentasodium salt.展开更多
Magnesium alloys are well applied in aerospace and aviation because of their mass saving potential,good electromagnetic shielding performance,and high damping capacity. To further promote the applications,in this pape...Magnesium alloys are well applied in aerospace and aviation because of their mass saving potential,good electromagnetic shielding performance,and high damping capacity. To further promote the applications,in this paper,the applications of magnesium alloys are reviewed,which could provide insights for researchers and application designers. Firstly,the applications in aerospace are reviewed,including missile,satellite,rocket,and spacecraft.Secondly,the applications and commercial magnesium alloys in aviation are summarized. Thirdly,the bottleneck and existing problems for such magnesium alloys applied in aerospace and aviation are discussed. The requirements for the magnesium alloy performance in aerospace and aviation are evaluated and elaborated.展开更多
Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is ...Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is important, such as in the aerospace and automotive industries.However, their practical applications are still limited because of their poor corrosion resistance, low high temperature strength and ambient formability. Based on such their property shortcomings, recently degradable magnesium alloys were developed for broadening their potential applications. Considering the degradable Mg alloys for medical applications were well reviewed, the present review put an emphasis on such degradable magnesium alloys for structural and functional applications, especially the applications in the environmental and energy fields. Their applications as fracture ball in fossil energy, sacrificial anode, washing ball, and as battery anodes, transient electronics, were summarized. The roles of alloying elements in magnesium and the design concept of such degradable magnesium alloys were discussed. The existing challenges for extending their future applications are explored.展开更多
Magnesium (Mg) is one of the most plentiful elements in the Earth’s crust and seawater. It possesses low density, high specific strength, high standard potential, and good biocompatibility. In addition, magnesium hyd...Magnesium (Mg) is one of the most plentiful elements in the Earth’s crust and seawater. It possesses low density, high specific strength, high standard potential, and good biocompatibility. In addition, magnesium hydride shows the highest energy density of all reversible metallic hydrides applicable for hydrogen storage. These unique features make Mg and its alloys a class of very promising material for structural and functional applications pertaining to aerospace, transportation, and biomedical and energy sectors. Wide applications of Mg alloys are thus deemed to significantly contribute to the ever-increasing environmental problems and energy challenges in the worldwide.展开更多
The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecy...The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecylbenzene sulfonate(C_(18)H_(29)NaO_(3)S,SDBS)and were introduced to the cathode group on their surface.The Al_(2)O_(3) whiskers were modified by the cetyl trimethyl ammonium bromide(C_(19)H_(42)BrN,CTAB)and were featured in the anode group.The suitable contents of CTAB and SDBS,the application atmosphere,and the type of solvents were investigated.Dispersion results showed that adding 2wt%SDBS into Mg powders and adding 2wt%CTAB into Al_(2)O_(3) whiskers pro-moted the formation of more uniformly mixed composite powders,compared to those of conventional ball milling via scanning electron micro-scopy(SEM)analysis.Meanwhile,the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al_(2)O_(3) whisker reinforcements and Mg matrix than undecorated composite powders.After preparation by powder metallurgy,the mor-phology,grain size,hardness,and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency.The results indicated that the modification of homogenized dispersed Al_(2)O_(3) whiskers in composites contributed to the refinement of 26%in grain size and the improvement of 20%in hardness compared with pure Mg,and the reduction of 32.5%in the standard deviation coefficient of hardness compared with the ball-milling sample.展开更多
文摘The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.
基金a grant from the state of Schleswig-Holstein and the European Union ERDF-European Regional Development Fund(Zukunftsprogramm Wirtschaft)。
文摘Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.
基金support from China Scholarship Council(No.202107000038)the Na-tional Natural Science Foundation of China(52004227).
文摘In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite.
基金We also thank DESY(Hamburg,Germany)for granting beamtime to the proposal I-20221296 and support of the PETRAⅢP05 end-station.
文摘With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significant advantages for fuel efficiency and load capacity.Combined with Ti,a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material.However,because of the great differences in chemical and electrochemical properties between Mg and Ti,it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components.This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples,aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte.The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple.The coating mainly contains MgO and MgAl_(2)O_(4)on the Mg0.6Ca side,and Al_(2)TiO_(5)is the dominant phase on the Ti side.The work also took advantage of synchrotron X-ray computed tomography(CT)scanning to achieve 3D reconstruction of the coating morphology,which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance.The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple.
基金the China Scholarship Council for the award of fellowship and funding(No.202006230137)。
文摘In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.
基金supported by the National Key R&D Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(No.52271091)the China Scholarship Council(No.202206050135)。
文摘The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.
基金the German Academic Exchange Service(DAAD)for the scholarship。
文摘The present study seeks the feasibility of using short carbon fibres recycled from polymer matrix composites as alternative to virgin carbon fibres in the reinforcement of magnesium alloys.The microstructures,high temperature mechanical and creep properties of AZ91 alloy and its composites with various recycled carbon fibre contents(2.5 and 5 wt.%)and lengths(100 and 500μm)were investigated in the temperature range of 25-200℃.The microstructural characterization showed that the high shear dispersion technique provided the cast composites with finer grains and relatively homogenous distribution of fibres.The materials tested displayed different behaviour depending on the type of loading.In general,while enhancements in the mechanical properties of composites is attributed to the load bearing and grain refinement effects of fibres,the fluctuations in the properties were discussed on the basis of porosity formation,relatively high reinforcement content leading to fibre clustering and interlayer found between the matrix and reinforcement compared to those of AZ91 alloy.The compressive creep tests revealed similar or higher minimum creep rates in the recycled carbon fibre reinforced AZ91 in comparison to the unreinforced AZ91.
基金China Scholarship Council for the award of fellowship and funding (No. 201708510113)。
文摘This work reports the influence of alumina fiber reinforcement of an AZ91Nd MMC(metal matrix composite)on the PEO coating formation process in a sodium phosphate-based electrolyte.By comparison with the pure AZ91Nd,the evolution of alumina fiber during the processing and the characteristics of the resultant PEO coating were investigated.The voltage response as a function of processing time was changed.Lower voltage in the presence of alumina fiber is responsible for the lower coating thickness.The morphology and phase composition of the coatings are also influenced by the incorporation of the fiber.Firstly,the fiber is embedded in the coating and interrupts the continuity of the coating.With increasing processing time,the fiber is found to be reactively incorporated in the coating.The intention to produce a MgAl_(2)O_(4)containing coating is achieved and it is mainly accumulated near the coating surface.However,due to the low number of fibers,the Al content is overall still low and only near to the fibers the MgAl_(2)O_(4)spinel phase can form.
基金carried out within the Synchro Load project(BMBF project number 05K16CGA)which is funded by the Röntgen-Angström Cluster(RAC),a bilateral research collaboration of the Swedish government and the German Federal Ministry of Education and Research(BMBF)the project Mg Bone(BMBF project number 05K16CGB)
文摘Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation process,the material’s surface and microstructure are being changed by stresses induced by machining.Hence degradable metal implants need to be fully characterized in terms of the influence of machining on the resulting microstructure and corrosion performance.In this study,micro-computed tomography(μCT)is used for the quantification of the degradation rate of biodegradable implants.To our best knowledge,for the first time quantitative measures are introduced to describe the degradation homogeneity in 3D.This information enables a prediction in terms of implant stability during the degradation in the body.Two magnesium gadolinium alloys,Mg-5Gd and Mg-10 Gd(all alloy compositions are given in weight%unless otherwise stated),in the shape of M2 headless screws have been investigated for their microstructure and their degradation performance up to 56 days.During the microstructure investigations particular attention was paid to the localized deformation of the alloys,due to the machining process.In vitro immersion testing was performed to assess the degradation performance quantified by subsequent weight loss and volume loss(usingμCT)measurements.Although differences were observed in the degree of screw’s near surface microstructure being influenced from machining,the degradation rates of both materials appeared to be suitable for application in orthopedic implants.From the degradation homogeneity point of view no obvious contrast was detected between both alloys.However,the higher degradation depth ratios between the crests and roots of Mg-5Gd ratios may indicated a less homogeneous degradation of the screws of these alloys on contract to the ones made of Mg-10Gd alloys.Due to its lower degradation rates,its more homogeneous microstructure,its weaker texture and better degradation performance extruded Mg-10Gd emerged more suitable as implant material than Mg-5Gd.
基金funding from the Helmholtz-Incubator project Uncertainty Quantification。
文摘In silico methods to study biodegradable implants have recently received increasing attention due to their potential in reducing experimental time and cost. An important application case for in silico methods are magnesium(Mg)-based biodegradable implants, as they represent a powerful alternative to traditional materials used for temporary orthopaedic applications. Controlling Mg alloy degradation is critical to designing an implant that supports the bone healing process. To simulate different aspects of this biodegradation process, several mathematical models have been proposed with the ultimate aim of replacing laboratory experiments with computational modeling. In this review, we provide a comprehensive and critical discussion of the published models and their performance with respect to capturing the complexity of the biodegradation process. This complexity is presented initially. Additionally, the present review discusses the different approaches of optimizing and quantifying the different sources of errors and uncertainties within the proposed models.
基金funding from the Helmholtz-Incubator project Uncertainty Quantification.
文摘Magnesium alloys are highly attractive for the use as temporary implant materials, due to their high biocompatibility and biodegradability.However, the prediction of the degradation rate of the implants is difficult, therefore, a large number of experiments are required. Computational modelling can aid in enabling the predictability, if sufficiently accurate models can be established. This work presents a generalized model of the degradation of pure magnesium in simulated body fluid over the course of 28 days considering uncertainty aspects. The model includes the computation of the metallic material thinning and is calibrated using the mean degradation depth of several experimental datasets simultaneously. Additionally, the formation and precipitation of relevant degradation products on the sample surface is modelled, based on the ionic composition of simulated body fluid. The computed mean degradation depth is in good agreement with the experimental data(NRMSE=0.07). However, the quality of the depth profile curves of the determined elemental weight percentage of the degradation products differs between elements(such as NRMSE=0.40 for phosphorus vs. NRMSE=1.03 for magnesium). This indicates that the implementation of precipitate formation may need further developments. The sensitivity analysis showed that the model parameters are correlated and which is related to the complexity and the high computational costs of the model. Overall, the model provides a correlating fit to the experimental data of pure Mg samples of different geometries degrading in simulated body fluid with reliable error estimation.
基金the financial supports from China Scholarship Council(CSC,201509350010)Helmholtz Association of German Research Centres.
文摘The interaction between organic molecules and biomaterial surfaces determines the fate of biomaterials during their service life,which is also the research hotspots in the field of biomaterials.To understand the mechanism of protein interaction with magnesium(Mg)degradation,alloying elements,immersion time,protein concentration and surface conditions have been previously considered for the effect of proteins on Mg degradation.However,fluid flow,as one of the critical factors,drew little attention in this case.In the present study,the effect of bovine serum albumin(BSA)and fetal bovine serum(FBS)on Mg degradation was compared under static and dynamic conditions.The results revealed that both BSA and FBS slightly decreased the degradation rate of Mg in Hanks’balanced salt solution(HBSS)under static immersion due to the protein adsorption and the formation of a Ca/P-rich top layer on Mg surface,whereas under dynamic flow condition the degradation of Mg was significantly accelerated in the presence of BSA or FBS.The reasons seemed to stem from the weakened protein adsorption on Mg surface in this case and the dynamically enhanced interaction between proteins and ions/products in solutions,which largely weaken the combination of the top Ca/P-rich layer with the inner corrosion product layer.These results highlight the importance of testing conditions for Mg characterization in vitro and the synergistic effect between different parameters on Mg degradation.
基金the Shanghai Sailing Program (23YF1417100)National Natural Science Foundation of China (U2037601)China Scholarship Council (Grant No: 202006890008) for the financial support。
文摘The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were performed under various applied stresses(i.e., 60, 80 and100 MPa). Among them, the sand-cast Mg-14Gd-0.4Zr samples examined under 250 ℃/80 MPa for 39 and 95 h, respectively, were chosen to systemically analyze their creep mechanisms using high-angle annular dark field-scanning transmission electron microscopy(HAADF-STEM).The obtained results showed that the enhancement of creep resistance can be mainly attributed to the coherent β' and β'_F phases with an alternate distribution, effectively impeding the basal dislocations movement. However, with the creep time increasing, the fine β'+β'_F precipitate chains coarsened and transformed to semi-coherent β_1 phase and even to large incoherent β phase(surrounded by precipitate-free areas) in grain interiors. The precipitate-free zones(PFZs) at grain boundaries(GBs) were formed, and they could expand during creep deformation. Apart from the main cross-slip of basal and prismatic dislocations, type dislocations were activated and tended to distribute near the GBs. The aforementioned phenomena induced the stress concentrations, consequently leading to the increment of the creep strain.
基金This work was funded by the National Natural Science Foundation of China(No.U2037601 and No.52074183)The authors appreciate Ge Chen,Wenbin Zou as well as Shiwei Wang for preparing the alloys,Wenyu Liu as well as Xuehao Zheng from ZKKF(Beijing)Science&Technology Co.,Ltd for the TEM measurement,Gert Wiese as well as Petra Fischer for SEM and hardness measurement and Yunting Li from the Instrument Analysis Center of Shanghai Jiao Tong University(China)for SEM measurement.Lixiang Yang also gratefully thanks the China Scholarship Council(201906230111)for awarding a fellowship to support his study stay at Helmholtz-Zentrum Geesthacht.
文摘In order to improve the ductility of commercial WE43 alloy and reduce its cost,a Mg-3Y-2Gd-1Nd-0.4Zr alloy with a low amount of rare earths was developed and prepared by sand casting with a differential pressure casting system.Its microstructure,mechanical properties and fracture behaviors in the as-cast,solution-treated and as-aged states were evaluated.It is found that the aged alloy exhibited excellent comprehensive mechanical properties owing to the fine dense plate-shapedβ'precipitates formed on prismatic habits during aging at 200℃for 192 hrs after solution-treated at 500℃for 24 hrs.Its ultimate tensile strength,yield strength,and elongation at ambient temperature reach to 319±10 MPa,202±2 MPa and 8.7±0.3%as well as 230±4 MPa,155±1 MPa and 16.0±0.5%at 250℃.The fracture mode of as-aged alloy was transferred from cleavage at room temperature to quasi-cleavage and ductile fracture at the test temperature 300℃.The properties of large-scale components fabricated using the developed Mg-3Y-2Gd-1Nd-0.4Zr alloy are better than those of commercial WE43 alloy,suggesting that the new developed alloy is a good candidate to fabricate the large complex thin-walled components.
基金financial support of the I2B fund(Helmholtz Association)in frame of MUFfin project as well as ACTICOAT project in frame of Erafinancial support within the project CICECO-Aveiro Institute of Materials(UIDB/50011/2020&UIDP/50011/2020)financed by national funds through the FCT/MCTES and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement。
文摘In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion layer of LDH nanocontainers were formed under ambient pressure conditions without carbonate addition in the electrolyte. The obtained LDH was characterized using experimental(SEM,XRD, TGA, XPS, Raman, etc.) and computational methods(thermodynamic calculation, modeling of possible LDH crystal structures). A comparison of three possible LDHs(LDH-OH,-NO_(3) and-CO_(3)) was performed. Based on the experimental results and crystal simulation approach, it was confirmed, that the mixed LDH-OH/CO_(3) is grown on the surface in the presence of DTPA pentasodium salt.
基金the National Natural Science Foundation of China(No. U2037601 and No. 52074183)the Opening Foundation of the National Key Laboratory of Rare Metal Specialty Materials(No. SKL2018K001)the China Scholarship Council(No. 201906230111)。
文摘Magnesium alloys are well applied in aerospace and aviation because of their mass saving potential,good electromagnetic shielding performance,and high damping capacity. To further promote the applications,in this paper,the applications of magnesium alloys are reviewed,which could provide insights for researchers and application designers. Firstly,the applications in aerospace are reviewed,including missile,satellite,rocket,and spacecraft.Secondly,the applications and commercial magnesium alloys in aviation are summarized. Thirdly,the bottleneck and existing problems for such magnesium alloys applied in aerospace and aviation are discussed. The requirements for the magnesium alloy performance in aerospace and aviation are evaluated and elaborated.
文摘Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is important, such as in the aerospace and automotive industries.However, their practical applications are still limited because of their poor corrosion resistance, low high temperature strength and ambient formability. Based on such their property shortcomings, recently degradable magnesium alloys were developed for broadening their potential applications. Considering the degradable Mg alloys for medical applications were well reviewed, the present review put an emphasis on such degradable magnesium alloys for structural and functional applications, especially the applications in the environmental and energy fields. Their applications as fracture ball in fossil energy, sacrificial anode, washing ball, and as battery anodes, transient electronics, were summarized. The roles of alloying elements in magnesium and the design concept of such degradable magnesium alloys were discussed. The existing challenges for extending their future applications are explored.
文摘Magnesium (Mg) is one of the most plentiful elements in the Earth’s crust and seawater. It possesses low density, high specific strength, high standard potential, and good biocompatibility. In addition, magnesium hydride shows the highest energy density of all reversible metallic hydrides applicable for hydrogen storage. These unique features make Mg and its alloys a class of very promising material for structural and functional applications pertaining to aerospace, transportation, and biomedical and energy sectors. Wide applications of Mg alloys are thus deemed to significantly contribute to the ever-increasing environmental problems and energy challenges in the worldwide.
基金the Fundamental Research Funds for the National Natural Science Foundation of China (Nos. 52101123 and 52004227)the Fundamental Research Funds for the Central Universities-Interdisciplinary Research (No. 2682021ZTPY001)the Dongguan Scitech Commissioner (No. 20211800500102)
文摘The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecylbenzene sulfonate(C_(18)H_(29)NaO_(3)S,SDBS)and were introduced to the cathode group on their surface.The Al_(2)O_(3) whiskers were modified by the cetyl trimethyl ammonium bromide(C_(19)H_(42)BrN,CTAB)and were featured in the anode group.The suitable contents of CTAB and SDBS,the application atmosphere,and the type of solvents were investigated.Dispersion results showed that adding 2wt%SDBS into Mg powders and adding 2wt%CTAB into Al_(2)O_(3) whiskers pro-moted the formation of more uniformly mixed composite powders,compared to those of conventional ball milling via scanning electron micro-scopy(SEM)analysis.Meanwhile,the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al_(2)O_(3) whisker reinforcements and Mg matrix than undecorated composite powders.After preparation by powder metallurgy,the mor-phology,grain size,hardness,and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency.The results indicated that the modification of homogenized dispersed Al_(2)O_(3) whiskers in composites contributed to the refinement of 26%in grain size and the improvement of 20%in hardness compared with pure Mg,and the reduction of 32.5%in the standard deviation coefficient of hardness compared with the ball-milling sample.
基金funded by the National Natural Science Foundation of China (Nos. 02110023210043, 51971042, U2167213, 51901028)supported by Sinoma Institute of Materials Research (Guang ZHOU) Co., Ltd (SIMR)gratefully acknowledged for financial support for Shi-bo ZHOU (No. 202106050089)